{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,4]],"date-time":"2024-07-04T22:40:45Z","timestamp":1720132845147},"reference-count":40,"publisher":"Springer Science and Business Media LLC","issue":"5","license":[{"start":{"date-parts":[[2018,1,3]],"date-time":"2018-01-03T00:00:00Z","timestamp":1514937600000},"content-version":"unspecified","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"crossref","award":["61701327","61711540303"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"crossref"}]},{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"crossref","award":["61473198"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"crossref"}]}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Int J Parallel Prog"],"published-print":{"date-parts":[[2018,10]]},"DOI":"10.1007\/s10766-017-0551-9","type":"journal-article","created":{"date-parts":[[2018,1,3]],"date-time":"2018-01-03T18:02:18Z","timestamp":1515002538000},"page":"838-858","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":7,"title":["Infrared Image Super-Resolution with Parallel Random Forest"],"prefix":"10.1007","volume":"46","author":[{"given":"Xiaomin","family":"Yang","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-5769-9340","authenticated-orcid":false,"given":"Wei","family":"Wu","sequence":"additional","affiliation":[]},{"given":"Binyu","family":"Yan","sequence":"additional","affiliation":[]},{"given":"Huiqian","family":"Wang","sequence":"additional","affiliation":[]},{"given":"Kai","family":"Zhou","sequence":"additional","affiliation":[]},{"given":"Kai","family":"Liu","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2018,1,3]]},"reference":[{"key":"551_CR1","unstructured":"http:\/\/en.wikipedia.org\/wiki\/Thermography"},{"issue":"4","key":"551_CR2","doi-asserted-by":"crossref","first-page":"887","DOI":"10.1109\/TIP.2008.924279","volume":"17","author":"X Zhang","year":"2008","unstructured":"Zhang, X., Wu, X.: Image interpolation by adaptive 2-D autogressive modeling and soft decision estimation. IEEE Trans. Image Process. 17(4), 887\u2013896 (2008)","journal-title":"IEEE Trans. Image Process."},{"issue":"10","key":"551_CR3","doi-asserted-by":"crossref","first-page":"1039","DOI":"10.1016\/j.imavis.2006.02.026","volume":"24","author":"JD Van","year":"2006","unstructured":"Van, J.D.: Image super-resolution survey. Image Vis. Comput. 24(10), 1039\u20131052 (2006)","journal-title":"Image Vis. Comput."},{"issue":"3","key":"551_CR4","first-page":"1","volume":"28","author":"G Freedman","year":"2010","unstructured":"Freedman, G., Fattal, R.: Image and video upscaling from local self-examples. ACM Trans. Graph. 28(3), 1\u201310 (2010)","journal-title":"ACM Trans. Graph."},{"issue":"9","key":"551_CR5","doi-asserted-by":"crossref","first-page":"1167","DOI":"10.1109\/TPAMI.2002.1033210","volume":"24","author":"S Baker","year":"2002","unstructured":"Baker, S., Kanade, T.: Limits on super-resolution and how to break them. IEEE Trans. Pattern Anal. Mach. Intell. 24(9), 1167\u20131183 (2002)","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"551_CR6","unstructured":"Yang, J.C., Wright, J., Huang, T., Ma, Y.: Image super-resolution as sparse representation of raw image patches. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 1806\u20131816 (2008)"},{"issue":"15","key":"551_CR7","doi-asserted-by":"crossref","first-page":"45","DOI":"10.1016\/j.optcom.2012.10.014","volume":"289","author":"H Liu","year":"2013","unstructured":"Liu, H., Li, S., Yin, H.: Infrared surveillance image super resolution via group sparse representation. Opt. Commun. 289(15), 45\u201352 (2013)","journal-title":"Opt. Commun."},{"issue":"5","key":"551_CR8","doi-asserted-by":"crossref","first-page":"50","DOI":"10.1016\/j.infrared.2013.07.006","volume":"61","author":"H Yu","year":"2013","unstructured":"Yu, H., Chen, F., Zhang, Z., Wang, C.: Single infrared image super-resolution combining non-local means with kernel regression. Infrared Phys. Technol. 61(5), 50\u201359 (2013)","journal-title":"Infrared Phys. Technol."},{"issue":"6","key":"551_CR9","doi-asserted-by":"crossref","first-page":"1596","DOI":"10.1109\/TIP.2007.896644","volume":"16","author":"K Ni","year":"2007","unstructured":"Ni, K., Truong, Q.N.: Image superresolution using support vector regression. IEEE Trans. Image Process. 16(6), 1596\u20131610 (2007)","journal-title":"IEEE Trans. Image Process."},{"issue":"6","key":"551_CR10","doi-asserted-by":"crossref","first-page":"394","DOI":"10.1016\/j.imavis.2011.02.001","volume":"29","author":"W Wu","year":"2011","unstructured":"Wu, W., Liu, Z., He, X.H.: Learning-based super resolution using kernel partial least squares. Image Vis. Comput. 29(6), 394\u2013406 (2011)","journal-title":"Image Vis. Comput."},{"issue":"3","key":"551_CR11","doi-asserted-by":"crossref","first-page":"498","DOI":"10.1109\/TMM.2012.2232646","volume":"15","author":"M-C Yang","year":"2013","unstructured":"Yang, M.-C., Frank Wang, Y.-C.: A self-learning approach to single image super-resolution. IEEE Trans. Multimed. 15(3), 498\u2013508 (2013)","journal-title":"IEEE Trans. Multimed."},{"key":"551_CR12","doi-asserted-by":"crossref","unstructured":"Dong, C., Loy, C., He, K., Tang, X.: Learning a deep convolutional network for image super-resolution. In: Proceedings of the European Conference on Computer Vision, pp. 184\u2013199 (2014)","DOI":"10.1007\/978-3-319-10593-2_13"},{"issue":"9","key":"551_CR13","doi-asserted-by":"crossref","first-page":"2130","DOI":"10.1109\/TMI.2016.2550080","volume":"35","author":"Y Liu","year":"2016","unstructured":"Liu, Y., Zhan, Z., Cai, J.-F., Guo, D., Chen, Z., Qu, X.: Projected iterative soft-thresholding algorithm for tight frames in compressed sensing magnetic resonance imaging. IEEE Trans. Med. Imaging 35(9), 2130\u20132140 (2016)","journal-title":"IEEE Trans. Med. Imaging"},{"issue":"9","key":"551_CR14","doi-asserted-by":"crossref","first-page":"1850","DOI":"10.1109\/TBME.2015.2503756","volume":"63","author":"Z Zhan","year":"2016","unstructured":"Zhan, Z., Cai, J.-F., Guo, D., Liu, Y., Chen, Z., Qu, X.: Fast multiclass dictionaries learning with geometrical directions in MRI reconstruction. IEEE Trans. Biomed. Eng. 63(9), 1850\u20131861 (2016)","journal-title":"IEEE Trans. Biomed. Eng."},{"issue":"7","key":"551_CR15","doi-asserted-by":"crossref","first-page":"1885","DOI":"10.1109\/TIP.2011.2107524","volume":"20","author":"B Leung","year":"2011","unstructured":"Leung, B., Jeon, G., Dubois, E.: Least-squares luma\u2013chroma demultiplexing algorithm for Bayer demosaicking. IEEE Trans. Image Process. 20(7), 1885\u20131894 (2011)","journal-title":"IEEE Trans. Image Process."},{"issue":"3","key":"551_CR16","doi-asserted-by":"crossref","first-page":"507","DOI":"10.1109\/TIFS.2014.2381872","volume":"10","author":"J Li","year":"2015","unstructured":"Li, J., Li, X., Yang, B., Sun, X.: Segmentation-based image copy-move forgery detection scheme. IEEE Trans. Inf. Forensics Secur. 10(3), 507\u2013518 (2015)","journal-title":"IEEE Trans. Inf. Forensics Secur."},{"issue":"5","key":"551_CR17","doi-asserted-by":"crossref","first-page":"912","DOI":"10.1109\/TCSVT.2013.2240914","volume":"23","author":"J Wang","year":"2013","unstructured":"Wang, J., Jeon, G., Jeong, J.: Deinterlacing using Taylor series expansion and polynomial regression. IEEE Trans. Circuits Syst. Video Technol. 23(5), 912\u2013917 (2013)","journal-title":"IEEE Trans. Circuits Syst. Video Technol."},{"issue":"1","key":"551_CR18","doi-asserted-by":"crossref","first-page":"48","DOI":"10.1109\/TIFS.2016.2601065","volume":"12","author":"Z Zhou","year":"2017","unstructured":"Zhou, Z., Wang, Y., Wu, Q.M.J., Yang, C.-N., Sun, X.: Effective and efficient global context verification for image copy detection. IEEE Trans. Inf. Forensics Secur. 12(1), 48\u201363 (2017)","journal-title":"IEEE Trans. Inf. Forensics Secur."},{"issue":"9","key":"551_CR19","first-page":"1","volume":"59","author":"Y Chen","year":"2016","unstructured":"Chen, Y., Hao, C., Wu, W., Wu, E.: Robust dense reconstruction by range merging based on confidence estimation. Sci. China Inf. Sci. 59(9), 1\u201311 (2016)","journal-title":"Sci. China Inf. Sci."},{"issue":"6","key":"551_CR20","first-page":"1336","volume":"70","author":"T Ma","year":"2015","unstructured":"Ma, T., Zhang, Y., Cao, J., Shen, J., Tang, M., Tian, Y., Al-Dhelaan, A., Al-Rodhaan, M.: KDVEM: a k-degree anonymity with vertex and edge modification algorithm. Computing 70(6), 1336\u20131344 (2015)","journal-title":"Computing"},{"issue":"6","key":"551_CR21","doi-asserted-by":"crossref","first-page":"843","DOI":"10.1016\/j.media.2013.09.007","volume":"18","author":"X Qu","year":"2014","unstructured":"Qu, X., Hou, Y., Lam, F., Guo, D., Zhong, J., Chen, Z.: Magnetic resonance image reconstruction from undersampled measurements using a patch-based nonlocal operator. Med. Image Anal. 18(6), 843\u2013856 (2014)","journal-title":"Med. Image Anal."},{"key":"551_CR22","doi-asserted-by":"crossref","first-page":"101","DOI":"10.1016\/j.eswa.2017.02.034","volume":"79","author":"S Cuomo","year":"2017","unstructured":"Cuomo, S., Michele, P.D., Piccialli, F., Galletti, A., Jung, J.E.: IoT-based collaborative reputation system for associating visitors and artworks in a cultural scenario. Expert Syst. Appl. 79, 101\u2013111 (2017)","journal-title":"Expert Syst. Appl."},{"key":"551_CR23","doi-asserted-by":"crossref","unstructured":"Chianese, A., Marulli, F., Moscato, V., Piccialli, F.: A smart multimedia guide for indoor contextual navigation in Cultural Heritage applications. In: 2013 International Conference on Indoor Positioning and Indoor Navigation, pp. 1\u20136 (2013)","DOI":"10.1109\/IPIN.2013.6851448"},{"issue":"61","key":"551_CR24","first-page":"3007","volume":"7","author":"R Farina","year":"2013","unstructured":"Farina, R., Cuomo, S., De Michele, P., Piccialli, F.: A smart GPU implementation of an elliptic kernel for an ocean global circulation model. Appl. Math. Sci. 7(61), 3007\u20133021 (2013)","journal-title":"Appl. Math. Sci."},{"key":"551_CR25","doi-asserted-by":"crossref","first-page":"2643","DOI":"10.1016\/j.procs.2013.06.001","volume":"18","author":"F Piccialli","year":"2013","unstructured":"Piccialli, F., Cuomo, S., De Michele, P.: A regularized MRI image reconstruction based on hessian penalty term on CPU\/GPU systems. Proced. Comput. Sci. 18, 2643\u20132646 (2013)","journal-title":"Proced. Comput. Sci."},{"key":"551_CR26","doi-asserted-by":"crossref","unstructured":"Chianese, A., Picciall, F.: SmaCH: a framework for smart cultural heritage spaces. In: 10th International Conference on Signal-Image Technology and Internet-Based Systems, SITIS 2014, pp. 477\u2013484 (2015)","DOI":"10.1109\/SITIS.2014.16"},{"key":"551_CR27","doi-asserted-by":"publisher","DOI":"10.1109\/TNNLS.2016.2527796","author":"B Gu","year":"2016","unstructured":"Gu, B., Sheng, V.S.: A robust regularization path algorithm for $$\\nu $$\u03bd-support vector classification. IEEE Trans. Neural Netw. Learn. Syst. (2016). https:\/\/doi.org\/10.1109\/TNNLS.2016.2527796","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"issue":"2","key":"551_CR28","doi-asserted-by":"crossref","first-page":"617","DOI":"10.1007\/s11045-015-0363-2","volume":"28","author":"J Wang","year":"2017","unstructured":"Wang, J., Lian, S., Shi, Y.-Q.: Hybrid multiplicative multi-watermarking in DWT domain. Multidimens. Syst. Signal Process. 28(2), 617\u2013636 (2017)","journal-title":"Multidimens. Syst. Signal Process."},{"key":"551_CR29","doi-asserted-by":"crossref","first-page":"286","DOI":"10.1016\/j.neucom.2017.01.064","volume":"238","author":"Q Tian","year":"2017","unstructured":"Tian, Q., Chen, S.: Cross-heterogeneous-database age estimation through correlation representation learning. Neurocomputing 238, 286\u2013295 (2017)","journal-title":"Neurocomputing"},{"key":"551_CR30","doi-asserted-by":"crossref","first-page":"813","DOI":"10.1016\/j.patcog.2004.11.007","volume":"38","author":"C Su","year":"2005","unstructured":"Su, C., Zhuang, Y., Huang, L.: Steerable pyramid based face hallucination. Pattern Recogn. 38, 813\u2013824 (2005)","journal-title":"Pattern Recogn."},{"key":"551_CR31","doi-asserted-by":"crossref","first-page":"023005","DOI":"10.1117\/1.3580750","volume":"20","author":"W Wu","year":"2011","unstructured":"Wu, W., Liu, Z., Gueaieb, W., He, X.: Single-image super-resolution based on Markov random field and contourlet transform. J. Electron. Imaging 20, 023005 (2011)","journal-title":"J. Electron. Imaging"},{"key":"551_CR32","doi-asserted-by":"crossref","unstructured":"Wu, W., Zheng, C.: Single image super-resolution using self-similarity and generalized nonlocal mean. In: 2013 IEEE International Conference of IEEE Region 10. (2013)","DOI":"10.1109\/TENCON.2013.6718930"},{"key":"551_CR33","unstructured":"Chang, H., Yeung, D.-Y., Xiong, Y.: Super-resolution through neighbor embedding. In: 2014 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 275\u2013282 (2004)"},{"key":"551_CR34","unstructured":"http:\/\/en.wikipedia.org\/wiki\/Random_forest"},{"key":"551_CR35","doi-asserted-by":"crossref","first-page":"472","DOI":"10.1016\/j.eswa.2005.04.043","volume":"29","author":"B Lariviere","year":"2005","unstructured":"Lariviere, B., Van den Poel, D.: Predicting customer retention and profitability by using random forests and regression forests techniques. Expert Syst. Appl. 29, 472\u2013484 (2005)","journal-title":"Expert Syst. Appl."},{"issue":"4","key":"551_CR36","doi-asserted-by":"crossref","first-page":"308","DOI":"10.1198\/tast.2009.08199","volume":"63","author":"U Gr\u00f6mping","year":"2009","unstructured":"Gr\u00f6mping, U.: Variable importance assessment in regression: linear regression versus random forest. Am. Stat. 63(4), 308\u2013319 (2009)","journal-title":"Am. Stat."},{"key":"551_CR37","unstructured":"Segal, M.R.: Machine learning benchmarks and random forest regression. Technical report, UC San Francisco (2004)"},{"issue":"2","key":"551_CR38","doi-asserted-by":"crossref","first-page":"263","DOI":"10.1007\/s10044-013-0355-5","volume":"18","author":"W Wu","year":"2015","unstructured":"Wu, W., Liu, Z., He, Y.: Classification of defects with ensemble methods in the automated visual inspection of sewer pipes. Pattern Anal. Appl. 18(2), 263\u2013276 (2015)","journal-title":"Pattern Anal. Appl."},{"key":"551_CR39","unstructured":"https:\/\/en.wikipedia.org\/wiki\/Overfitting"},{"key":"551_CR40","doi-asserted-by":"crossref","first-page":"600","DOI":"10.1109\/TIP.2003.819861","volume":"13","author":"Z Wang","year":"2004","unstructured":"Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13, 600\u2013612 (2004)","journal-title":"IEEE Trans. Image Process."}],"container-title":["International Journal of Parallel Programming"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/article\/10.1007\/s10766-017-0551-9\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s10766-017-0551-9.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s10766-017-0551-9.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2019,10,9]],"date-time":"2019-10-09T00:11:43Z","timestamp":1570579903000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/s10766-017-0551-9"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2018,1,3]]},"references-count":40,"journal-issue":{"issue":"5","published-print":{"date-parts":[[2018,10]]}},"alternative-id":["551"],"URL":"https:\/\/doi.org\/10.1007\/s10766-017-0551-9","relation":{},"ISSN":["0885-7458","1573-7640"],"issn-type":[{"value":"0885-7458","type":"print"},{"value":"1573-7640","type":"electronic"}],"subject":[],"published":{"date-parts":[[2018,1,3]]}}}