iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://api.crossref.org/works/10.1007/S10664-022-10206-6
{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,16]],"date-time":"2024-09-16T11:53:31Z","timestamp":1726487611732},"reference-count":64,"publisher":"Springer Science and Business Media LLC","issue":"7","license":[{"start":{"date-parts":[[2022,9,20]],"date-time":"2022-09-20T00:00:00Z","timestamp":1663632000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2022,9,20]],"date-time":"2022-09-20T00:00:00Z","timestamp":1663632000000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Empir Software Eng"],"published-print":{"date-parts":[[2022,12]]},"DOI":"10.1007\/s10664-022-10206-6","type":"journal-article","created":{"date-parts":[[2022,9,20]],"date-time":"2022-09-20T09:04:03Z","timestamp":1663664643000},"update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":3,"title":["Extracting enhanced artificial intelligence model metadata from software repositories"],"prefix":"10.1007","volume":"27","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-8085-5708","authenticated-orcid":false,"given":"Jason","family":"Tsay","sequence":"first","affiliation":[]},{"given":"Alan","family":"Braz","sequence":"additional","affiliation":[]},{"given":"Martin","family":"Hirzel","sequence":"additional","affiliation":[]},{"given":"Avraham","family":"Shinnar","sequence":"additional","affiliation":[]},{"given":"Todd","family":"Mummert","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2022,9,20]]},"reference":[{"key":"10206_CR1","unstructured":"Ajv (2018) Ajv: another JSON schema validator. https:\/\/ajv.js.org\/ (Retrieved September 2018)"},{"key":"10206_CR2","doi-asserted-by":"publisher","unstructured":"Amershi S, Begel A, Bird C, DeLine R, Gall H, Kamar E, Nagappan N, Nushi B, Zimmermann T (2019) Software engineering for machine learning: a case study. In: International conference on software engineering: software engineering in practice (ICSE-SEIP). https:\/\/doi.org\/10.1109\/ICSE-SEIP.2019.00042https:\/\/doi.org\/10.1109\/ICSE-SEIP.2019.00042, pp 291\u2013300","DOI":"10.1109\/ICSE-SEIP.2019.00042 10.1109\/ICSE-SEIP.2019.00042"},{"key":"10206_CR3","unstructured":"Apache (2019) Apache CouchDB. https:\/\/couchdb.apache.org. Accessed 21 Jan 2019"},{"key":"10206_CR4","unstructured":"Archive G (2021) GH Archive. https:\/\/www.gharchive.org\/. Accessed 27 Oct 2021"},{"key":"10206_CR5","unstructured":"arXiv (1991) arXiv.org e-Print archive. https:\/\/arxiv.org\/. Accessed 13 Mar 2020"},{"key":"10206_CR6","unstructured":"arXiv (2018) arXiv.org help - arXiv API. https:\/\/arxiv.org\/help\/api\/index. Accessed 13 Mar 2020"},{"key":"10206_CR7","doi-asserted-by":"crossref","unstructured":"Augustsson L (1998) Cayenne\u2014a language with dependent types. In: International conference on functional programming (ICFP). http:\/\/doi.acm.org\/10.1145\/289423.289451, pp 239\u2013250","DOI":"10.1145\/289423.289451"},{"key":"10206_CR8","doi-asserted-by":"publisher","unstructured":"Bangash A A, Sahar H, Chowdhury S, Wong A W, Hindle A, Ali K (2019) What do developers know about machine learning: a study of ML discussions on StackOverflow. In: Conference on mining software repositories (MSR). https:\/\/doi.org\/10.1109\/MSR.2019.00052, pp 260\u2013264","DOI":"10.1109\/MSR.2019.00052"},{"key":"10206_CR9","unstructured":"Baudart G, Hirzel M, Kate K, Ram P, Shinnar A (2020) Lale: consistent automated machine learning. In: KDD workshop on automation in machine learning (AutoML@KDD). arXiv:https:\/\/arxiv.org\/abs\/2007.01977"},{"key":"10206_CR10","doi-asserted-by":"crossref","unstructured":"Baudart G, Hirzel M, Kate K, Ram P, Shinnar A, Tsay J (2021) Pipeline combinators for gradual autoML. In: Advances in neural information processing systems (neurIPS)","DOI":"10.1145\/3534678.3542630"},{"key":"10206_CR11","unstructured":"Baudart G, Kirchner P, Hirzel M, Kate K (2020) Mining documentation to extract hyperparameter schemas. In: ICML Workshop on automated machine learning (autoML@ICML). arXiv:2006.16984"},{"key":"10206_CR12","doi-asserted-by":"crossref","unstructured":"Braiek H B, Khomh F, Adams B (2018) The Open-Closed principle of modern machine learning frameworks. In: Conference on mining software repositories (MSR), pp 353\u2013363","DOI":"10.1145\/3196398.3196445"},{"key":"10206_CR13","unstructured":"Breck E, Polyzotis N, Roy S, Whang S E, Zinkevich M (2019) Data validation for machine learning. In: Conference on systems and machine learning (sysML)"},{"key":"10206_CR14","doi-asserted-by":"crossref","unstructured":"Chelba C, Mikolov T, Schuster M, Ge Q, Brants T, Koehn P (2013) One billion word benchmark for measuring progress in statistical language modeling. CoRR arXiv:1312.3005","DOI":"10.21437\/Interspeech.2014-564"},{"key":"10206_CR15","unstructured":"Code PW (2020) Papers with code: the latest in machine learning. https:\/\/paperswithcode.com. Accessed 13 Mar 2020"},{"key":"10206_CR16","doi-asserted-by":"crossref","unstructured":"Conneau A, Schwenk H, Cun Y, Barrault L (2017) Very deep convolutional networks for text classification. In: Long papers\u2014continued, 15th conference of the European chapter of the Association for Computational Linguistics, EACL 2017\u2014Proceedings of conference. Publisher Copyright: \u24b8 2017 Association for Computational Linguistics; 15th Conference of the European Chapter of the Association for Computational Linguistics, EACL 2017; Conference date: 03-04-2017 Through 07-04-2017. Association for Computational Linguistics (ACL), pp 1107\u20131116","DOI":"10.18653\/v1\/E17-1104"},{"key":"10206_CR17","doi-asserted-by":"publisher","unstructured":"Dabbish L, Stuart C, Tsay J, Herbsleb J (2012) Social coding in GitHub: transparency and collaboration in an open software repository. In: Conference on computer supported cooperative work (CSCW). https:\/\/doi.org\/10.1145\/2145204.2145396, pp 1277\u20131286","DOI":"10.1145\/2145204.2145396"},{"key":"10206_CR18","unstructured":"Devlin J, Chang M W, Lee K, Toutanova K (2018) Bert: pre-training of deep bidirectional transformers for language understanding. arXiv:1810.04805"},{"key":"10206_CR19","unstructured":"GitHub (2016) GitHub API v3 | GitHub Developer Guide. https:\/\/developer.github.com\/v3\/. Accessed 13 Mar 2020"},{"key":"10206_CR20","unstructured":"GitHub (2020) The world\u2019s leading software development platform\u2013GitHub. https:\/\/github.com\/. Accessed 13 Mar 2020"},{"key":"10206_CR21","doi-asserted-by":"publisher","unstructured":"Gonzalez D, Zimmermann T, Nagappan N (2020) The state of the ml-universe: 10 years of artificial intelligence & machine learning software development on github. In: Proceedings of the 17th international conference on mining software repositories, MSR \u201920. https:\/\/doi.org\/10.1145\/3379597.3387473. Association for Computing Machinery, New York, pp 431\u2013442","DOI":"10.1145\/3379597.3387473"},{"key":"10206_CR22","doi-asserted-by":"crossref","unstructured":"Gousios G (2013) The ghtorrent dataset and tool suite. In: Proceedings of the 10th working conference on mining software repositories, MSR \u201913. IEEE Press, Piscataway, pp 233\u2013236. http:\/\/dl.acm.org\/citation.cfm?id=2487085.2487132","DOI":"10.1109\/MSR.2013.6624034"},{"issue":"7","key":"10206_CR23","doi-asserted-by":"publisher","first-page":"653","DOI":"10.1109\/32.859533","volume":"26","author":"TL Graves","year":"2000","unstructured":"Graves T L, Karr A F, Marron J S, Siy H (2000) Predicting fault incidence using software change history. IEEE Trans Softw Eng 26(7):653\u2013661. https:\/\/doi.org\/10.1109\/32.859533","journal-title":"IEEE Trans Softw Eng"},{"issue":"1","key":"10206_CR24","doi-asserted-by":"publisher","first-page":"60","DOI":"10.32614\/RJ-2009-010","volume":"1","author":"A Guazzelli","year":"2009","unstructured":"Guazzelli A, Zeller M, Lin W C, Williams G, et al. (2009) Pmml: an open standard for sharing models. R J 1(1):60\u201365","journal-title":"R J"},{"key":"10206_CR25","doi-asserted-by":"crossref","unstructured":"Gundersen O E, Kjensmo S (2017) State of the art: reproducibility in artificial intelligence. In: Conference on artificial intelligence (AAAI)","DOI":"10.1609\/aaai.v32i1.11503"},{"key":"10206_CR26","doi-asserted-by":"crossref","unstructured":"He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR)","DOI":"10.1109\/CVPR.2016.90"},{"key":"10206_CR27","doi-asserted-by":"crossref","unstructured":"Hill C, Bellamy R, Erickson T, Burnett M (2016) Trials and tribulations of developers of intelligent systems: a field study. In: Symposium on visual languages and human-centric computing (VL\/HCC), pp 162\u2013170","DOI":"10.1109\/VLHCC.2016.7739680"},{"key":"10206_CR28","doi-asserted-by":"publisher","unstructured":"Hummer W, Muthusamy V, Rausch T, Dube P, El Maghraoui K, Murthi A, Oum P (2019) ModelOps: cloud-based lifecycle management for reliable and trusted AI. In: 2019 IEEE International conference on cloud engineering (IC2e). https:\/\/doi.org\/10.1109\/IC2E.2019.00025, pp 113\u2013120","DOI":"10.1109\/IC2E.2019.00025"},{"key":"10206_CR29","unstructured":"IBM (2020) Watson Discovery product page. https:\/\/www.ibm.com\/cloud\/watson-discovery. Accessed 12 Nov 2020"},{"key":"10206_CR30","unstructured":"Internet Engineering Task Force (2018) JSON Schema specification. http:\/\/json-schema.org\/specification.html. (Retrieved September 2018)"},{"key":"10206_CR31","doi-asserted-by":"crossref","unstructured":"Kalliamvakou E, Gousios G, Blincoe K, Singer L, German D M, Damian D (2014) The promises and perils of mining GitHub. In: Conference on mining software repositories (MSR). http:\/\/doi.acm.org\/10.1145\/2597073.2597074, pp 92\u2013101","DOI":"10.1145\/2597073.2597074"},{"key":"10206_CR32","doi-asserted-by":"crossref","unstructured":"Kim M, Zimmermann T, DeLine R, Begel A (2016) The emerging role of data scientists on software development teams. In: International conference on software engineering (ICSE). http:\/\/doi.acm.org\/10.1145\/2884781.2884783, pp 96\u2013107","DOI":"10.1145\/2884781.2884783"},{"key":"10206_CR33","unstructured":"Lucene A (2018) https:\/\/lucene.apache.org\/. Accessed 23 Feb 2018"},{"key":"10206_CR34","doi-asserted-by":"crossref","unstructured":"Ma Y, Fakhoury S, Christensen M, Arnaoudova V, Zogaan W, Mirakhorli M (2018) Automatic classification of software artifacts in Open-Source applications. In: Conference on mining software repositories (MSR), pp 414\u2013425","DOI":"10.1145\/3196398.3196446"},{"issue":"4","key":"10206_CR35","doi-asserted-by":"publisher","first-page":"31","DOI":"10.1109\/MS.2013.86","volume":"30","author":"T Menzies","year":"2013","unstructured":"Menzies T, Zimmermann T (2013) Software analytics: so what? IEEE Softw 30(4):31\u201337. https:\/\/doi.org\/10.1109\/MS.2013.86https:\/\/doi.org\/10.1109\/MS.2013.86","journal-title":"IEEE Softw"},{"key":"10206_CR36","doi-asserted-by":"crossref","unstructured":"Miao H, Li A, Davis L S, Deshpande A (2016) ModelHub: towards unified data and lifecycle management for deep learning. CoRR. arXiv:1611.06224","DOI":"10.1109\/ICDE.2017.112"},{"key":"10206_CR37","doi-asserted-by":"crossref","unstructured":"Miao H, Li A, Davis L S, Deshpande A (2017) On model discovery for hosted data science projects. In: Workshop on data management for end-to-end machine learning, DEEM\u201917. http:\/\/doi.acm.org\/10.1145\/3076246.3076252, pp 6:1\u20136:4","DOI":"10.1145\/3076246.3076252"},{"key":"10206_CR38","unstructured":"MLFlow (2019) MLFlow\u2014a platform for the machine learning lifecycle. https:\/\/mlflow.org\/. Accessed 13 Mar 2020"},{"key":"10206_CR39","unstructured":"ONNX (2017) ONNX. https:\/\/onnx.ai\/. Accessed 13 Mar 2020"},{"issue":"4","key":"10206_CR40","doi-asserted-by":"publisher","first-page":"340","DOI":"10.1109\/TSE.2005.49","volume":"31","author":"TJ Ostrand","year":"2005","unstructured":"Ostrand T J, Weyuker E J, Bell R M (2005) Predicting the location and number of faults in large software systems. IEEE Trans Softw Eng 31 (4):340\u2013355. https:\/\/doi.org\/10.1109\/TSE.2005.49","journal-title":"IEEE Trans Softw Eng"},{"key":"10206_CR41","unstructured":"Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, Killeen T, Lin Z, Gimelshein N, Antiga L, Desmaison A, Kopf A, Yang E, DeVito Z, Raison M, Tejani A, Chilamkurthy S, Steiner B, Fang L, Bai J, Chintala S (2019) Pytorch: an imperative style, high-performance deep learning library. In: Advances in neural information processing systems 32. http:\/\/papers.neurips.cc\/paper\/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf. Curran Associates, Inc., pp 8024\u20138035"},{"key":"10206_CR42","doi-asserted-by":"publisher","unstructured":"Pezoa F, Reutter J L, Suarez F, Ugarte M, Vrgo\u010d D. (2016) Foundations of JSON schema. In: International conference on world wide web (WWW). https:\/\/doi.org\/10.1145\/2872427.2883029, pp 263\u2013273","DOI":"10.1145\/2872427.2883029"},{"key":"10206_CR43","doi-asserted-by":"publisher","unstructured":"Pimentel J F, Murta L, Braganholo V, Freire J (2019) A large-scale study about quality and reproducibility of jupyter notebooks. In: Conference on mining software repositories (MSR). https:\/\/doi.org\/10.1109\/MSR.2019.00077, pp 507\u2013517","DOI":"10.1109\/MSR.2019.00077"},{"key":"10206_CR44","doi-asserted-by":"crossref","unstructured":"Pivarski J, Bennett C, Grossman R L (2016) Deploying analytics with the portable format for analytics (pfa). In: Conference on knowledge discovery and data mining (KDD). http:\/\/doi.acm.org\/10.1145\/2939672.2939731, pp 579\u2013588","DOI":"10.1145\/2939672.2939731"},{"key":"10206_CR45","unstructured":"Publio G C, Esteves D, \u0141Awrynowicz A, Panov P, Soldatova L, Soru T, Vanschoren J, Zafar H (2018) ML schema: exposing the semantics of machine learning with schemas and ontologies. In: Reproducibility in machine learning workshop (RML). https:\/\/openreview.net\/forum?id=B1e8MrXVxQ"},{"key":"10206_CR46","unstructured":"Rak-amnouykit I, Milanova A, Baudart G, Hirzel M, Dolby J (2021) Extracting hyperparameter constraints from code. In: ICLR Workshop on security and safety in machine learning systems (secML@ICLR). https:\/\/aisecure-workshop.github.io\/aml-iclr2021\/papers\/18.pdf"},{"key":"10206_CR47","doi-asserted-by":"publisher","unstructured":"Rodr\u00edguez C, Baez M, Daniel F, Casati F, Trabucco J C, Canali L, Percannella G (2016) REST APIS: a large-scale analysis of compliance with principles and best practices. In: International conference on web engineering (ICWE). https:\/\/doi.org\/10.1007\/978-3-319-38791-8_2, pp 21\u201339","DOI":"10.1007\/978-3-319-38791-8_2"},{"key":"10206_CR48","doi-asserted-by":"crossref","unstructured":"Ronneberger O, Fischer P, Brox T Navab N, Hornegger J, Wells WM, Frangi AF (eds) (2015) U-Net: convolutional networks for biomedical image segmentation. Springer International Publishing, Cham","DOI":"10.1007\/978-3-319-24574-4_28"},{"key":"10206_CR49","unstructured":"Sculley D, Holt G, Golovin D, Davydov E, Phillips T, Ebner D, Chaudhary V, Young M, Crespo J F, Dennison D (2015) Hidden technical debt in machine learning systems. In: Conference on neural information processing systems (NIPS), pp 2503\u20132511"},{"key":"10206_CR50","doi-asserted-by":"crossref","unstructured":"Sethi A, Sankaran A, Panwar N, Khare S, Mani S (2018) Dlpaper2code: auto-generation of code from deep learning research papers. In: Conference on artificial intelligence (AAAI). https:\/\/www.aaai.org\/ocs\/index.php\/AAAI\/AAAI18\/paper\/view\/17100, pp 7339\u20137346","DOI":"10.1609\/aaai.v32i1.12326"},{"key":"10206_CR51","unstructured":"Shah N (2019) ARXIV data from 24,000+ papers Version 2. https:\/\/www.kaggle.com\/neelshah18\/arxivdataset\/home. Accessed 15 Jan 2019"},{"key":"10206_CR52","unstructured":"Shaikh S, Vishwakarma H, Mehta S, Varshney K R, Ramamurthy K N, Wei D (2017) An end-to-end machine learning pipeline that ensures fairness policies. In: Data for good exchange. https:\/\/arxiv.org\/abs\/1710.06876"},{"key":"10206_CR53","doi-asserted-by":"crossref","unstructured":"Smith M J, Sala C, Kanter J M, Veeramachaneni K (2019) The machine learning bazaar: harnessing the ML ecosystem for effective system development. https:\/\/arxiv.org\/abs\/1905.08942","DOI":"10.1145\/3318464.3386146"},{"key":"10206_CR54","doi-asserted-by":"crossref","unstructured":"Szegedy C, Ioffe S, Vanhoucke V, Alemi A A (2017) Inception-v4, Inception-ResNet and the impact of residual connections on learning. In: Conference on artificial intelligence (AAAI)","DOI":"10.1609\/aaai.v31i1.11231"},{"key":"10206_CR55","doi-asserted-by":"crossref","unstructured":"Trainer E H, Chaihirunkarn C, Kalyanasundaram A, Herbsleb J D (2015) From personal tool to community resource: what\u2019s the extra work and who will do it?. In: Conference on computer supported cooperative work (CSCW). http:\/\/doi.acm.org\/10.1145\/2675133.2675172, pp 417\u2013430","DOI":"10.1145\/2675133.2675172"},{"key":"10206_CR56","unstructured":"Tram\u00e8r F, Zhang F, Juels A, Reiter M K, Ristenpart T (2016) Stealing machine learning models via prediction APIs. In: USENIX security symposium, pp 601\u2013618"},{"key":"10206_CR57","unstructured":"Tsay J, Mummert T, Bobroff N, Braz A, Hirzel M (2018) Runway: machine learning model experiment management tool. In: Conference on systems and machine learning (sysML)"},{"key":"10206_CR58","doi-asserted-by":"publisher","unstructured":"Tsay J, Braz A, Hirzel M, Shinnar A, Mummert T (2020) Aimmx: artificial intelligence model metadata extractor. In: Proceedings of the 17th international conference on mining software repositories, MSR \u201920. https:\/\/doi.org\/10.1145\/3379597.3387448. Association for Computing Machinery, New York, pp 81\u201392","DOI":"10.1145\/3379597.3387448"},{"issue":"2","key":"10206_CR59","doi-asserted-by":"publisher","first-page":"49","DOI":"10.1145\/2641190.2641198","volume":"15","author":"J Vanschoren","year":"2014","unstructured":"Vanschoren J, van Rijn J N, Bischl B, Torgo L (2014) openML: networked science in machine learning. SIGKDD Explor Newsl 15(2):49\u201360. http:\/\/doi.acm.org\/10.1145\/2641190.2641198","journal-title":"SIGKDD Explor Newsl"},{"key":"10206_CR60","unstructured":"Vartak M, Subramanyam H, Lee W E, Viswanathan S, Husnoo S, Madden S, Zaharia M (2016) ModelDB: a system for machine learning model management. In: Workshop on human-in-the-loop data analytics (HILDA). http:\/\/doi.acm.org\/10.1145\/2939502.2939516, pp 14:1\u201314:3"},{"key":"10206_CR61","unstructured":"Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser LU, Polosukhin I (2017) Attention is all you need. In: Guyon I, Luxburg UV, Bengio S, Wallach H, Fergus R, Vishwanathan S, Garnett R (eds) Advances in neural information processing systems, vol 30. Curran Associates. https:\/\/proceedings.neurips.cc\/paper\/2017\/file\/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf"},{"key":"10206_CR62","doi-asserted-by":"crossref","unstructured":"Vaziri M, Mandel L, Shinnar A, Sim\u00e9on J, Hirzel M (2017) Generating chat bots from web api specifications. In: Symposium on new ideas, new paradigms, and reflections on programming and software (Onward!). http:\/\/doi.acm.org\/10.1145\/3133850.3133864, pp 44\u201357","DOI":"10.1145\/3133850.3133864"},{"key":"10206_CR63","doi-asserted-by":"publisher","unstructured":"Wan Z, Xia X, Lo D, Murphy G C (2019) How does machine learning change software development practices? IEEE Trans Softw Eng 1. https:\/\/doi.org\/10.1109\/TSE.2019.2937083","DOI":"10.1109\/TSE.2019.2937083"},{"key":"10206_CR64","unstructured":"Witten I H, Frank E, Hall M A, Pal C J (2016) Data mining: practical machine learning tools and techniques. Morgan Kaufmann"}],"container-title":["Empirical Software Engineering"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s10664-022-10206-6.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s10664-022-10206-6\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s10664-022-10206-6.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,11,21]],"date-time":"2022-11-21T02:08:54Z","timestamp":1668996534000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s10664-022-10206-6"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,9,20]]},"references-count":64,"journal-issue":{"issue":"7","published-print":{"date-parts":[[2022,12]]}},"alternative-id":["10206"],"URL":"https:\/\/doi.org\/10.1007\/s10664-022-10206-6","relation":{},"ISSN":["1382-3256","1573-7616"],"issn-type":[{"value":"1382-3256","type":"print"},{"value":"1573-7616","type":"electronic"}],"subject":[],"published":{"date-parts":[[2022,9,20]]},"assertion":[{"value":"2 July 2022","order":1,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"20 September 2022","order":2,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}}],"article-number":"176"}}