{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,20]],"date-time":"2024-09-20T17:04:07Z","timestamp":1726851847864},"reference-count":40,"publisher":"Springer Science and Business Media LLC","issue":"3","license":[{"start":{"date-parts":[[2023,11,6]],"date-time":"2023-11-06T00:00:00Z","timestamp":1699228800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,11,6]],"date-time":"2023-11-06T00:00:00Z","timestamp":1699228800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Cluster Comput"],"published-print":{"date-parts":[[2024,6]]},"DOI":"10.1007\/s10586-023-04161-0","type":"journal-article","created":{"date-parts":[[2023,11,6]],"date-time":"2023-11-06T16:02:25Z","timestamp":1699286545000},"page":"3717-3739","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":8,"title":["Novel hybrid success history intelligent optimizer with Gaussian transformation: application in CNN hyperparameter tuning"],"prefix":"10.1007","volume":"27","author":[{"given":"Hussam N.","family":"Fakhouri","sequence":"first","affiliation":[]},{"given":"Sadi","family":"Alawadi","sequence":"additional","affiliation":[]},{"given":"Feras M.","family":"Awaysheh","sequence":"additional","affiliation":[]},{"given":"Faten","family":"Hamad","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,11,6]]},"reference":[{"issue":"1","key":"4161_CR1","doi-asserted-by":"publisher","first-page":"40","DOI":"10.1038\/s41580-021-00407-0","volume":"23","author":"JG Greener","year":"2022","unstructured":"Greener, J.G., Kandathil, S.M., Moffat, L., Jones, D.T.: A guide to machine learning for biologists. Nat. Rev. Mol. Cell Biol. 23(1), 40\u201355 (2022)","journal-title":"Nat. Rev. Mol. Cell Biol."},{"issue":"3","key":"4161_CR2","doi-asserted-by":"publisher","first-page":"160","DOI":"10.1007\/s42979-021-00592-x","volume":"2","author":"IH Sarker","year":"2021","unstructured":"Sarker, I.H.: Machine learning: algorithms, real-world applications and research directions. SN Comput. Sci. 2(3), 160 (2021)","journal-title":"SN Comput. Sci."},{"key":"4161_CR3","doi-asserted-by":"publisher","first-page":"102275","DOI":"10.1016\/j.scs.2020.102275","volume":"61","author":"R Khalid","year":"2020","unstructured":"Khalid, R., & Javaid, N. (2020). A survey on hyperparameters optimization algorithms of forecasting models in smart grid. Sustainable Cities and Society, 61, 102275.","journal-title":"Sustainable Cities and Society"},{"issue":"2","key":"4161_CR4","first-page":"e1484","volume":"13","author":"B Bischl","year":"2023","unstructured":"Bischl, B., Binder, M., Lang, M., Pielok, T., Richter, J., Coors, S., Lindauer, M.: Hyperparameter optimization: foundations, algorithms, best practices, and open challenges. Wiley Interdiscip. Rev.: Data Min. Knowl. Discov. 13(2), e1484 (2023)","journal-title":"Wiley Interdiscip. Rev.: Data Min. Knowl. Discov."},{"issue":"10","key":"4161_CR5","doi-asserted-by":"publisher","first-page":"1627","DOI":"10.1109\/JAS.2021.1004129","volume":"8","author":"J Tang","year":"2021","unstructured":"Tang, J., Liu, G., Pan, Q.: A review on representative swarm intelligence algorithms for solving optimization problems: applications and trends. IEEE\/CAA J. Autom. Sin. 8(10), 1627\u20131643 (2021)","journal-title":"IEEE\/CAA J. Autom. Sin."},{"issue":"3","key":"4161_CR6","doi-asserted-by":"publisher","first-page":"807","DOI":"10.1016\/j.ejor.2020.08.045","volume":"290","author":"C Gambella","year":"2021","unstructured":"Gambella, C., Ghaddar, B., Naoum-Sawaya, J.: Optimization problems for machine learning: a survey. Eur. J. Oper. Res. 290(3), 807\u2013828 (2021)","journal-title":"Eur. J. Oper. Res."},{"key":"4161_CR7","doi-asserted-by":"crossref","unstructured":"Del Buono, N., Esposito, F., & Selicato, L. (2020). Methods for hyperparameters optimization in learning approaches: an overview. In Machine Learning, Optimization, and Data Science: 6th International Conference, LOD 2020, Siena, Italy, July 19\u201323, 2020, Revised Selected Papers, Part I 6 (pp. 100\u2013112). Springer International Publishing.","DOI":"10.1007\/978-3-030-64583-0_11"},{"issue":"19","key":"4161_CR8","doi-asserted-by":"publisher","first-page":"15533","DOI":"10.1007\/s00521-020-04789-8","volume":"32","author":"L Abualigah","year":"2020","unstructured":"Abualigah, L., Diabat, A.: A comprehensive survey of the Grasshopper optimization algorithm: results, variants, and applications. Neural Comput. Appl. 32(19), 15533\u201315556 (2020)","journal-title":"Neural Comput. Appl."},{"key":"4161_CR9","doi-asserted-by":"publisher","first-page":"186","DOI":"10.36548\/jscp.2020.3.007","volume":"2","author":"K Shi","year":"2020","unstructured":"Smys, S., Chen, J. I. Z., & Shakya, S. (2020). Survey on neural network architectures with deep learning. Journal of Soft Computing Paradigm (JSCP), 2(03), 186\u2013194.","journal-title":"Journal of Soft Computing Paradigm"},{"key":"4161_CR10","doi-asserted-by":"publisher","first-page":"11","DOI":"10.1016\/j.neucom.2016.12.038","volume":"234","author":"W Liu","year":"2017","unstructured":"Liu, W., Wang, Z., Liu, X., Zeng, N., Liu, Y., & Alsaadi, F. E. (2017). A survey of deep neural network architectures and their applications. Neurocomputing, 234, 11\u201326.","journal-title":"Neurocomputing"},{"key":"4161_CR11","unstructured":"Goel, S., Klivans, A., & Koehler, F. (2020). From boltzmann machines to neural networks and back again. Advances in Neural Information Processing Systems, 33, 6354\u20136365."},{"key":"4161_CR12","doi-asserted-by":"crossref","unstructured":"Fakhouri, H. N., Hamad, F., & Alawamrah, A. (2022). Success history intelligent optimizer. The Journal of Supercomputing, 1\u201342.","DOI":"10.1007\/s11227-021-04093-9"},{"key":"4161_CR13","doi-asserted-by":"publisher","first-page":"171","DOI":"10.1016\/j.jpdc.2022.06.014","volume":"169","author":"F Gul","year":"2022","unstructured":"Gul, F., Mir, I., Alarabiat, D., Alabool, H.M., Abualigah, L., Mir, S.: Implementation of bio-inspired hybrid algorithm with mutation operator for robotic path planning. J. Parallel Distrib. Comput. 169, 171\u2013184 (2022)","journal-title":"J. Parallel Distrib. Comput."},{"key":"4161_CR14","doi-asserted-by":"publisher","first-page":"35979","DOI":"10.1109\/ACCESS.2020.2975078","volume":"8","author":"Q Hao","year":"2020","unstructured":"Hao, Q., Zhou, Z., Wei, Z., Chen, G.: Parameters identification of photovoltaic models using a multi-strategy success-history-based adaptive differential evolution. IEEE Access 8, 35979\u201335994 (2020)","journal-title":"IEEE Access"},{"key":"4161_CR15","doi-asserted-by":"publisher","first-page":"11695","DOI":"10.1007\/s00500-019-04631-x","volume":"24","author":"HN Fakhouri","year":"2020","unstructured":"Fakhouri, H.N., Hudaib, A., Sleit, A.: Multivector particle swarm optimization algorithm. Soft Computing 24, 11695\u201311713 (2020)","journal-title":"Soft Computing"},{"key":"4161_CR16","doi-asserted-by":"publisher","first-page":"104520","DOI":"10.1016\/j.chemolab.2022.104520","volume":"223","author":"D Passos","year":"2022","unstructured":"Passos, D., Mishra, P.: A tutorial on automatic hyperparameter tuning of deep spectral modelling for regression and classification tasks. Chemom. Intell. Lab. Syst. 223, 104520 (2022)","journal-title":"Chemom. Intell. Lab. Syst."},{"issue":"1","key":"4161_CR17","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1186\/s13018-019-1290-y","volume":"14","author":"C Yan","year":"2019","unstructured":"Yan, C., Xiong, Y., Chen, L., Endo, Y., Hu, L., Liu, M., Liu, G.: A comparative study of the efficacy of ultrasonics and extracorporeal shock wave in the treatment of tennis elbow: a meta-analysis of randomized controlled trials. J. Orthop. Surg. Res. 14(1), 1\u201312 (2019)","journal-title":"J. Orthop. Surg. Res."},{"key":"4161_CR18","unstructured":"Liashchynskyi, P., Liashchynskyi, P.: Grid search, random search, genetic algorithm: a big comparison for NAS. arXiv preprint arXiv:1912.06059. (2019)."},{"key":"4161_CR19","doi-asserted-by":"publisher","DOI":"10.1017\/9781108348973","volume-title":"Bayesian optimization","author":"R Garnett","year":"2023","unstructured":"Garnett, R.: Bayesian optimization. Cambridge University Press, Cambridge (2023)"},{"key":"4161_CR20","doi-asserted-by":"publisher","first-page":"37","DOI":"10.1007\/978-3-030-70542-8_2","volume-title":"Metaheuristics in Machine Learning: Theory and Applications","author":"A Gaspar","year":"2021","unstructured":"Gaspar, A., Oliva, D., Cuevas, E., Zald\u00edvar, D., P\u00e9rez, M., Pajares, G.: Hyperparameter optimization in a convolutional neural network using metaheuristic algorithms. Metaheuristics in Machine Learning: Theory and Applications, pp. 37\u201359. Springer International Publishing, Cham (2021)"},{"issue":"12","key":"4161_CR21","doi-asserted-by":"publisher","first-page":"1732","DOI":"10.3390\/biology11121732","volume":"11","author":"\u0130 Ya\u011f","year":"2022","unstructured":"Ya\u011f, \u0130, Altan, A.: Artificial intelligence-based robust hybrid algorithm design and implementation for real-time detection of plant diseases in agricultural environments. Biology 11(12), 1732 (2022)","journal-title":"Biology"},{"key":"4161_CR22","doi-asserted-by":"publisher","first-page":"3","DOI":"10.3390\/app12031186","volume":"12","author":"I Raji","year":"2022","unstructured":"Raji, I. D., Bello-Salau, H., Umoh, I. J., Onumanyi, A. J., Adegboye, M. A., & Salawudeen, A. T. (2022). Simple deterministic selection-based genetic algorithm for hyperparameter tuning of machine learning models. Applied Sciences, 12(3), 1186.","journal-title":"Applied Sciences"},{"issue":"1","key":"4161_CR23","doi-asserted-by":"publisher","first-page":"913","DOI":"10.32604\/csse.2023.025434","volume":"44","author":"M Manikandakumar","year":"2023","unstructured":"Manikandakumar, M., & Karthikeyan, P. (2023). Weed classification using particle swarm optimization and deep learning models. Comput. Syst. Sci. Eng, 44(1), 913\u2013927.","journal-title":"Comput. Syst. Sci. Eng"},{"key":"4161_CR24","doi-asserted-by":"publisher","DOI":"10.1016\/j.jksuci.2023.01.020","author":"N Talpur","year":"2023","unstructured":"Talpur, N., Abdulkadir, S.J., Akhir, E.A.P., Hasan, M.H., Alhussian, H., Abdullah, M.H.A.: A novel bitwise arithmetic optimization algorithm for the rule base optimization of deep neuro-fuzzy system. J. King Saud Univ.-Comput. Inf. Sci. (2023). https:\/\/doi.org\/10.1016\/j.jksuci.2023.01.020","journal-title":"J. King Saud Univ.-Comput. Inf. Sci."},{"key":"4161_CR25","volume-title":"Intelligent and interactive computing. Lecture notes in networks and systems","author":"MNM Salleh","year":"2019","unstructured":"Salleh, M.N.M., Hussain, K., Talpur, N.: A divide-and-conquer strategy for adaptive neuro-fuzzy inference system learning using metaheuristic algorithm. In: Piuri, V., Balas, V., Borah, S., Syed Ahmad, S. (eds.) Intelligent and interactive computing. Lecture notes in networks and systems, vol. 67. Springer, Singapore (2019)"},{"key":"4161_CR26","doi-asserted-by":"crossref","unstructured":"Talpur, N., Abdulkadir, S.J., Hasan, M.H., Alhussian, H., Alwadain, A.: A novel wrapper-based optimization algorithm for the feature selection and classification. Universiti Teknologi PETRONAS, Seri Iskandar, Malaysia and King Saud University, Riyadh, Saudi Arabia (2022)","DOI":"10.32604\/cmc.2023.034025"},{"key":"4161_CR27","doi-asserted-by":"crossref","unstructured":"Mohakud, R., & Dash, R. (2020). Survey on hyperparameter optimization using nature-inspired algorithm of deep convolution neural network. In Intelligent and Cloud Computing: Proceedings of ICICC 2019, Volume 1 (pp. 737\u2013744). Singapore: Springer Singapore.","DOI":"10.1007\/978-981-15-5971-6_77"},{"key":"4161_CR28","unstructured":"Serizawa, T., & Fujita, H. (2020). Optimization of convolutional neural network using the linearly decreasing weight particle swarm optimization. arXiv preprint arXiv:2001.05670."},{"key":"4161_CR29","doi-asserted-by":"crossref","first-page":"4","DOI":"10.3390\/informatics8010004","volume":"8","author":"E Elgeldawi,","year":"2021","unstructured":"Elgeldawi, E., Sayed, A., Galal, A. R., & Zaki, A. M. (2021, November). Hyperparameter tuning for machine learning algorithms used for arabic sentiment analysis. In Informatics (Vol. 8, No. 4, p. 79). MDPI.","journal-title":"nformatics"},{"issue":"16","key":"4161_CR30","doi-asserted-by":"publisher","first-page":"3019","DOI":"10.3390\/math10163019","volume":"10","author":"Y Fan","year":"2022","unstructured":"Fan, Y., Zhang, Y., Guo, B., Luo, X., Peng, Q., Jin, Z.: A hybrid sparrow search algorithm of the hyperparameter optimization in deep learning. Mathematics 10(16), 3019 (2022)","journal-title":"Mathematics"},{"key":"4161_CR31","first-page":"507","volume-title":"Deep neural networks hyperparameter optimization using particle swarm optimization for detecting frauds transactions","author":"M Tayebi","year":"2022","unstructured":"Tayebi, M., El Kafhali, S.: Deep neural networks hyperparameter optimization using particle swarm optimization for detecting frauds transactions, pp. 507\u2013516. Springer, Singapore (2022)"},{"key":"4161_CR32","doi-asserted-by":"publisher","first-page":"36","DOI":"10.1080\/01969722.2020.1827797","volume":"52","author":"Y Guo","year":"2020","unstructured":"Guo, Y., Li, J. Y., & Zhan, Z. H. (2020). Efficient hyperparameter optimization for convolution neural networks in deep learning: A distributed particle swarm optimization approach. Cybernetics and Systems, 52(1), 36\u201357.","journal-title":"Cybernetics and Systems"},{"key":"4161_CR33","doi-asserted-by":"publisher","DOI":"10.1016\/j.apacoust.2021.108336","volume":"183","author":"Y Zhu","year":"2021","unstructured":"Zhu, Y., Li, G., Wang, R., Tang, S., Su, H., Cao, K.: Intelligent fault diagnosis of hydraulic piston pump combining improved LeNet-5 and PSO hyperparameter optimization. Applied Acoustics 183, (2021)","journal-title":"Applied Acoustics"},{"key":"4161_CR34","doi-asserted-by":"publisher","first-page":"295","DOI":"10.1016\/j.neucom.2020.07.061","volume":"415","author":"L Yang","year":"2020","unstructured":"Yang, L., Shami, A.: On hyperparameter optimization of machine learning algorithms: theory and practice. Neurocomputing 415, 295\u2013316 (2020)","journal-title":"Neurocomputing"},{"issue":"3","key":"4161_CR35","first-page":"593","volume":"6","author":"M Feurer","year":"2020","unstructured":"Feurer, M., & Hutter, F. (2019). Hyperparameter optimization. Automated machine learning: Methods, systems, challenges, 3-33.","journal-title":"Hyperparameter optimization. Automated machine learning: Methods, systems, challenge"},{"key":"4161_CR36","unstructured":"Wu, J., Poloczek, M., Wilson, A. G., & Frazier, P. (2017). Bayesian optimization with gradients. Advances in neural information processing systems, 30."},{"key":"4161_CR37","doi-asserted-by":"crossref","unstructured":"Ansarullah, S. I., Mohsin Saif, S., Abdul Basit Andrabi, S., Kumhar, S. H., Kirmani, M. M., & Kumar, D. P. (2022). An intelligent and reliable hyperparameter optimization machine learning model for early heart disease assessment using imperative risk attributes. Journal of healthcare engineering, 2022.","DOI":"10.1155\/2022\/9882288"},{"key":"4161_CR38","doi-asserted-by":"publisher","first-page":"112976","DOI":"10.1016\/j.eswa.2019.112976","volume":"141","author":"X Zhang","year":"2020","unstructured":"Zhang, X., Xu, Y., Yu, C., Heidari, A.A., Li, S., Chen, H., Li, C.: Gaussian mutational chaotic fruit fly-built optimization and feature selection. Expert Syst. Appl. 141, 112976 (2020)","journal-title":"Expert Syst. Appl."},{"issue":"6","key":"4161_CR39","doi-asserted-by":"publisher","first-page":"885","DOI":"10.1080\/0952813X.2019.1694591","volume":"32","author":"SN Fakhouri","year":"2020","unstructured":"Fakhouri, S.N., Hudaib, A., Fakhouri, H.N.: Enhanced optimizer algorithm and its application to software testing. J. Exp. Theor. Artif. Intell. 32(6), 885\u2013907 (2020)","journal-title":"J. Exp. Theor. Artif. Intell."},{"key":"4161_CR40","doi-asserted-by":"publisher","first-page":"65","DOI":"10.1007\/978-3-030-72711-6_4","volume-title":"Artificial intelligence: theory and applications","author":"E Tuba","year":"2021","unstructured":"Tuba, E., Ba\u010danin, N., Strumberger, I., Tuba, M.: Convolutional neural networks hyperparameters tuning. Artificial intelligence: theory and applications, pp. 65\u201384. Springer International Publishing, Cham (2021)"}],"container-title":["Cluster Computing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s10586-023-04161-0.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s10586-023-04161-0\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s10586-023-04161-0.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,5,29]],"date-time":"2024-05-29T21:18:00Z","timestamp":1717017480000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s10586-023-04161-0"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,11,6]]},"references-count":40,"journal-issue":{"issue":"3","published-print":{"date-parts":[[2024,6]]}},"alternative-id":["4161"],"URL":"http:\/\/dx.doi.org\/10.1007\/s10586-023-04161-0","relation":{},"ISSN":["1386-7857","1573-7543"],"issn-type":[{"value":"1386-7857","type":"print"},{"value":"1573-7543","type":"electronic"}],"subject":[],"published":{"date-parts":[[2023,11,6]]},"assertion":[{"value":"15 July 2023","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"13 September 2023","order":2,"name":"revised","label":"Revised","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"27 September 2023","order":3,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"6 November 2023","order":4,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}},{"order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Declarations"}},{"value":"The authors declare no competing interests.","order":2,"name":"Ethics","group":{"name":"EthicsHeading","label":"Conflict of interest"}}]}}