{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,22]],"date-time":"2024-07-22T23:11:22Z","timestamp":1721689882805},"reference-count":26,"publisher":"Springer Science and Business Media LLC","issue":"3","license":[{"start":{"date-parts":[[2014,3,28]],"date-time":"2014-03-28T00:00:00Z","timestamp":1395964800000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Cluster Comput"],"published-print":{"date-parts":[[2014,9]]},"DOI":"10.1007\/s10586-014-0366-z","type":"journal-article","created":{"date-parts":[[2014,3,27]],"date-time":"2014-03-27T15:05:27Z","timestamp":1395932727000},"page":"643-651","source":"Crossref","is-referenced-by-count":9,"title":["A parallel algorithm for robust fault detection in semiconductor manufacturing processes"],"prefix":"10.1007","volume":"17","author":[{"given":"Woong-Kee","family":"Loh","sequence":"first","affiliation":[]},{"given":"Ju-Young","family":"Yun","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2014,3,28]]},"reference":[{"issue":"1","key":"366_CR1","doi-asserted-by":"crossref","first-page":"45","DOI":"10.1109\/5326.827453","volume":"30","author":"JR Boston","year":"2000","unstructured":"Boston, J.R.: A signal detection system based on Dempster\u2013Shafer theory and comparison to fuzzy detection. IEEE Trans Syst Man Cybern C 30(1), 45\u201351 (2000)","journal-title":"IEEE Trans Syst Man Cybern C"},{"key":"366_CR2","unstructured":"Chan, K., Fu, A.W.: Efficient time series matching by wavelets. In: Proceedings of the IEEE International Conference on Data Engineering (ICDE), Sydney, Australia, pp. 126\u2013133 (1999)"},{"key":"366_CR3","doi-asserted-by":"crossref","unstructured":"Chiu, B., Keogh, E., Lonardi, S.: Probabilistic discovery of time series motifs. In: Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Washington DC, USA, pp. 493\u2013498 (2003)","DOI":"10.1145\/956750.956808"},{"key":"366_CR4","doi-asserted-by":"crossref","unstructured":"Ding, H., Trajcevski, G., Scheuermann, P., Wang, X., Keogh, E.: Querying and mining of time series data: experimental comparison of representations and distance measures. In: Proceedings of the VLDB Endowment (PVLDB), pp. 1542\u20131552 (2008)","DOI":"10.14778\/1454159.1454226"},{"key":"366_CR5","doi-asserted-by":"crossref","unstructured":"Faloutsos, C., Ranganathan, M., Manolopoulos, Y.: Fast subsequence matching in time-series databases. In: Proceedings of the ACM SIGMOD International Conference on Management of Data, Minneapolis, MN, USA, pp. 419\u2013429 (1994)","DOI":"10.1145\/191843.191925"},{"key":"366_CR6","doi-asserted-by":"crossref","unstructured":"Hong, S.J., May, G.S., Yamartino, J., Skumanich, A.: Automated fault detection and classification of etch systems using modular neural networks. In: Proceedings of the SPIE, vol. 5378, Santa Clara, CA, USA, pp. 134\u2013141 (2004)","DOI":"10.1117\/12.536870"},{"issue":"1","key":"366_CR7","doi-asserted-by":"crossref","first-page":"83","DOI":"10.1109\/TSM.2011.2175394","volume":"25","author":"SJ Hong","year":"2012","unstructured":"Hong, S.J., Lim, W.Y., Cheong, T., May, G.S.: Fault detection and classification in plasma etch equipment for semiconductor manufacturing $$e$$ e -diagnostics. IEEE Trans. Semicond. Manuf. 25(1), 83\u201393 (2012)","journal-title":"IEEE Trans. Semicond. Manuf."},{"key":"366_CR8","doi-asserted-by":"crossref","first-page":"12","DOI":"10.1186\/2192-1962-2-12","volume":"2","author":"A James","year":"2012","unstructured":"James, A., Dimitrijev, S.: Ranked selection of nearest discriminating features. Hum. Comput. Info. Sci. 2, 12 (2012)","journal-title":"Hum. Comput. Info. Sci."},{"issue":"2","key":"366_CR9","first-page":"45","volume":"3","author":"H-Y Jeong","year":"2012","unstructured":"Jeong, H.-Y.: The remote management of operational information for manufacturing systems. J. Converg. 3(2), 45\u201350 (2012)","journal-title":"J. Converg."},{"key":"366_CR10","doi-asserted-by":"crossref","unstructured":"Keogh, E., Lin, J., Fu, A.: HOT SAX: efficiently finding the most unusual time series subsequence. In: Proceedings of the IEEE International Conference on Data Mining (ICDM), Houston, TX, USA, pp. 226\u2013233 (2005)","DOI":"10.1109\/ICDM.2005.79"},{"key":"366_CR11","doi-asserted-by":"crossref","unstructured":"Keogh, E., Lonardi, S., Ratanamahatana, C.: Towards parameter-free data mining. In: Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Seattle, WA, USA, pp. 206\u2013215 (2004)","DOI":"10.1145\/1014052.1014077"},{"issue":"3","key":"366_CR12","first-page":"47","volume":"3","author":"Y Kim","year":"2012","unstructured":"Kim, Y., Chang, H.: IT convergence index and measurement design in the manufacturing industry. J. Converg. 3(3), 47\u201350 (2012)","journal-title":"J. Converg."},{"key":"366_CR13","doi-asserted-by":"crossref","unstructured":"Lin, J., Keogh, E., Lonardi, S., Chiu, B.: A symbolic representation of time series, with implications for streaming algorithms. In: Proceedings of the ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery (DMKD), San Diego, CA, USA, pp. 2\u201311 (2003)","DOI":"10.1145\/882082.882086"},{"issue":"2","key":"366_CR14","doi-asserted-by":"crossref","first-page":"107","DOI":"10.1007\/s10618-007-0064-z","volume":"15","author":"J Lin","year":"2007","unstructured":"Lin, J., Keogh, E., Wei, L., Lonardi, S.: Experiencing SAX: a novel symbolic representation of time series. Data Min. Knowl. Discov. 15(2), 107\u2013144 (2007)","journal-title":"Data Min. Knowl. Discov."},{"issue":"2","key":"366_CR15","doi-asserted-by":"crossref","first-page":"241","DOI":"10.3745\/JIPS.2012.8.2.241","volume":"8","author":"R Malhotra","year":"2012","unstructured":"Malhotra, R., Jain, A.: Fault prediction using statistical and machine learning methods for improving software quality. J. Info. Process. Syst. 8(2), 241\u2013262 (2012)","journal-title":"J. Info. Process. Syst."},{"issue":"1","key":"366_CR16","doi-asserted-by":"crossref","first-page":"28","DOI":"10.1109\/66.210656","volume":"6","author":"GS May","year":"1993","unstructured":"May, G.S., Spanos, C.J.: Automated malfunction diagnosis of semiconductor fabrication equipment: a plasma etch application. IEEE Trans. Semicond. Manuf. 6(1), 28\u201340 (1993)","journal-title":"IEEE Trans. Semicond. Manuf."},{"issue":"4","key":"366_CR17","first-page":"23","volume":"3","author":"Y Pan","year":"2012","unstructured":"Pan, Y., Zhang, J.: Parallel programming on cloud computing platforms: challenges and solutions. J. Converg. 3(4), 23\u201328 (2012)","journal-title":"J. Converg."},{"key":"366_CR18","unstructured":"Patel, P., Keogh, E., Lin, J., Lonardi, S.: Mining motifs in massive time series databases. In: Proceedings of the IEEE International Conference on Data Mining (ICDM), Maebashi City, Japan, pp. 370\u2013377 (2002)"},{"key":"366_CR19","doi-asserted-by":"crossref","unstructured":"Sarkar, K., Nasipuri, M., Ghose, S.: Machine learning based keyphrase extraction: comparing decision trees, naive Bayes, and artificial neural networks. J. Info. Process. Syst. 8(4), 693\u2013712 (2012)","DOI":"10.3745\/JIPS.2012.8.4.693"},{"issue":"3","key":"366_CR20","doi-asserted-by":"crossref","first-page":"483","DOI":"10.3745\/JIPS.2012.8.3.483","volume":"8","author":"MP Satone","year":"2012","unstructured":"Satone, M.P., Kharate, G.K.: Face recognition based on PCA on wavelet subband of average-half-face. J. Info. Process. Syst. 8(3), 483\u2013494 (2012)","journal-title":"J. Info. Process. Syst."},{"key":"366_CR21","doi-asserted-by":"crossref","DOI":"10.2172\/800792","volume-title":"Combination of Evidence in Dempster\u2013Shafer Theory","author":"K Sentz","year":"2002","unstructured":"Sentz, K., Ferson, S.: Combination of Evidence in Dempster\u2013Shafer Theory. Sandia National Laboratories, SAND (2002)"},{"key":"366_CR22","doi-asserted-by":"crossref","unstructured":"Shieh J., Keogh, E.: iSAX: indexing and mining terabyte sized time series. In: Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Las Vegas, NV, USA, pp. 623\u2013632 (2008)","DOI":"10.1145\/1401890.1401966"},{"key":"366_CR23","doi-asserted-by":"crossref","first-page":"5","DOI":"10.1186\/2192-1962-2-5","volume":"2","author":"S Silas","year":"2012","unstructured":"Silas, S., Ezra, K., Rajsingh, E.B.: A novel fault tolerant service selection framework for pervasive computing. Hum. Comput. Info. Sci. 2, 5 (2012)","journal-title":"Hum. Comput. Info. Sci."},{"key":"366_CR24","doi-asserted-by":"crossref","first-page":"4","DOI":"10.1186\/2192-1962-2-4","volume":"2","author":"C Valencio","year":"2012","unstructured":"Valencio, C., et al.: MR-Radix: a multi-relational data mining algorithm. Hum. Comput. Info. Sci. 2, 4 (2012)","journal-title":"Hum. Comput. Info. Sci."},{"key":"366_CR25","unstructured":"Wei, L., Kumar, N., Lolla, V.N., Keogh, E., Lonardi, S., Ratanamahatana, C. A.: Assumption-free anomaly detection in time series. In: Proceedings of the International Scientific and Statistical Database Management Conference (SSDBM), Santa Barbara, CA, USA, pp. 237\u2013240 (2005)"},{"key":"366_CR26","unstructured":"Wu, H., Siegel, M., Stiefelhagen, R., Yang, J.: Sensor fusion using Dempster\u2013Shafer theory. In: Proceedings of IEEE Instrumentation and Measurement Technology Conference, Anchorage, AK, USA, pp. 7\u201312 (2002)"}],"container-title":["Cluster Computing"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s10586-014-0366-z.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/article\/10.1007\/s10586-014-0366-z\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s10586-014-0366-z","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2019,8,9]],"date-time":"2019-08-09T00:07:47Z","timestamp":1565309267000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/s10586-014-0366-z"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2014,3,28]]},"references-count":26,"journal-issue":{"issue":"3","published-print":{"date-parts":[[2014,9]]}},"alternative-id":["366"],"URL":"https:\/\/doi.org\/10.1007\/s10586-014-0366-z","relation":{},"ISSN":["1386-7857","1573-7543"],"issn-type":[{"value":"1386-7857","type":"print"},{"value":"1573-7543","type":"electronic"}],"subject":[],"published":{"date-parts":[[2014,3,28]]}}}