{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,6]],"date-time":"2024-09-06T07:58:29Z","timestamp":1725609509163},"reference-count":45,"publisher":"Springer Science and Business Media LLC","issue":"4","license":[{"start":{"date-parts":[[2021,7,14]],"date-time":"2021-07-14T00:00:00Z","timestamp":1626220800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2021,7,14]],"date-time":"2021-07-14T00:00:00Z","timestamp":1626220800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"funder":[{"name":"e General Program of National Natural Science Foundation of China","award":["61806147"]},{"name":"Shanghai Natural Science Foundation of China","award":["18ZR1441200"]}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Appl Intell"],"published-print":{"date-parts":[[2022,3]]},"DOI":"10.1007\/s10489-021-02585-y","type":"journal-article","created":{"date-parts":[[2021,7,14]],"date-time":"2021-07-14T02:03:21Z","timestamp":1626228201000},"page":"3867-3879","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":3,"title":["Reference-guided deep deblurring via a selective attention network"],"prefix":"10.1007","volume":"52","author":[{"given":"Yaowei","family":"Li","sequence":"first","affiliation":[]},{"given":"Ye","family":"Luo","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-9071-9443","authenticated-orcid":false,"given":"Jianwei","family":"Lu","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2021,7,14]]},"reference":[{"key":"2585_CR1","first-page":"1404","volume":"28.3","author":"Y Bai","year":"2018","unstructured":"Bai Y, et al. (2018) Graph-based blind image deblurring from a single photograph. IEEE Trans Image Proc 28.3:1404\u20131418","journal-title":"IEEE Trans Image Proc"},{"key":"2585_CR2","doi-asserted-by":"crossref","unstructured":"Chakrabarti A (2016) A neural approach to blind motion deblurring. In: ECCV","DOI":"10.1007\/978-3-319-46487-9_14"},{"key":"2585_CR3","doi-asserted-by":"publisher","first-page":"117003","DOI":"10.1117\/1.3505868","volume":"49","author":"X Chen","year":"2010","unstructured":"Chen X, Yang J, Wu Q (2010) Image deblur in gradient domain. Opt Eng 49 :117003","journal-title":"Opt Eng"},{"key":"2585_CR4","doi-asserted-by":"crossref","unstructured":"Cho S, Lee S (2009) Fast motion deblurring. In: SIG- GRAPH 2009","DOI":"10.1145\/1661412.1618491"},{"key":"2585_CR5","doi-asserted-by":"crossref","unstructured":"Gao H et al (2019) Dynamic scene deblurring with parameter selective sharing and nested skip connections. In: 2019 IEEE\/CVF Con- ference on computer vision and pattern recognition (CVPR), pp 3843\u20133851","DOI":"10.1109\/CVPR.2019.00397"},{"key":"2585_CR6","doi-asserted-by":"crossref","unstructured":"He K et al (2016) Deep residual learning for image recognition. In: 2016 IEEE Conference on computer vision and pattern recognition (CVPR), pp 770\u2013778","DOI":"10.1109\/CVPR.2016.90"},{"key":"2585_CR7","doi-asserted-by":"crossref","unstructured":"Jia J (2014) Mathematical models and practical solvers for uniform motion deblurring. In: Motion Deblurring","DOI":"10.1017\/CBO9781107360181.002"},{"key":"2585_CR8","doi-asserted-by":"crossref","unstructured":"Jia J (2007) Single image motion deblurring using transparency. In: 2007 IEEE Conference on computer vision and pattern recognition, pp 1\u20138","DOI":"10.1109\/CVPR.2007.383029"},{"key":"2585_CR9","unstructured":"Jolicoeur-Martineau A (2019) The relativistic discriminator: a key element missing from standard GAN. arXiv:1807.00734"},{"key":"2585_CR10","doi-asserted-by":"crossref","unstructured":"Kim T, Mu Lee K (2015) Generalized video deblurring for dynamic scenes. In: 2015 IEEE Conference on computer vision and pattern recognition (CVPR), pp 5426\u20135434","DOI":"10.1109\/CVPR.2015.7299181"},{"key":"2585_CR11","unstructured":"Kingma DP, Ba J (2014) Adam: A method for stochastic optimization. arXiv:1412.6980"},{"key":"2585_CR12","unstructured":"Krishnan D, Fergus R (2009) Fast Image Deconvolution using Hyper-Laplacian Priors. In: NIPS"},{"key":"2585_CR13","doi-asserted-by":"crossref","unstructured":"Kupyn O, et al. (2019) DeblurGAN-v2: deblurring (orders-of-magnitude) faster and better. In: 2019 IEEE\/CVF international conference on computer vision (ICCV), pp 8877\u20138886","DOI":"10.1109\/ICCV.2019.00897"},{"key":"2585_CR14","doi-asserted-by":"crossref","unstructured":"Kupyn O et al (2018) DeblurGAN: Blind motion deblurring using conditional adversarial networks. In: 2018 IEEE\/CVF conference on computer vision and pattern recognition, pp 8183\u20138192","DOI":"10.1109\/CVPR.2018.00854"},{"key":"2585_CR15","doi-asserted-by":"crossref","unstructured":"Lai W-S et al (2016) A comparative study for single image blind deblurring. In: 2016 IEEE conference on computer vision and pattern recognition (CVPR), pp 1701\u20131709","DOI":"10.1109\/CVPR.2016.188"},{"key":"2585_CR16","doi-asserted-by":"crossref","unstructured":"Lai W-S et al (2016) A comparative study for single image blind deblurring. In: 2016 IEEE conference on computer vision and pattern recognition (CVPR), pp 1701\u20131709","DOI":"10.1109\/CVPR.2016.188"},{"key":"2585_CR17","doi-asserted-by":"crossref","unstructured":"Levin A (2006) Blind motion deblurring using image statistics. In: NIPS","DOI":"10.7551\/mitpress\/7503.003.0110"},{"key":"2585_CR18","first-page":"1191","volume":"42.5","author":"L Xinwang","year":"2019","unstructured":"Xinwang L et al (2019) Multiple kernel k k-means with incomplete kernels. IEEE Trans Pattern Anal Mach Intell 42.5:1191\u20131204","journal-title":"IEEE Trans Pattern Anal Mach Intell"},{"key":"2585_CR19","doi-asserted-by":"crossref","unstructured":"Michaeli T, Irani M (2014) Blind deblurring using internal patch recurrence. In: European conference on computer vision. Springer, pp 783\u2013798","DOI":"10.1007\/978-3-319-10578-9_51"},{"key":"2585_CR20","doi-asserted-by":"crossref","unstructured":"Nah S, Kim T, Mu Lee K (2017) Deep multi-scale convolutional neural network for dynamic scene deblurring. In: 2017 IEEE Conference on computer vision and pattern recognition (CVPR), pp 257\u2013265","DOI":"10.1109\/CVPR.2017.35"},{"key":"2585_CR21","doi-asserted-by":"crossref","unstructured":"Pan J, et al. (2016) Blind image deblurring using dark channel prior. In: 2016 IEEE conference on computer vision and pattern recognition (CVPR), pp 1628\u20131636","DOI":"10.1109\/CVPR.2016.180"},{"key":"2585_CR22","unstructured":"Paszke A et al (2017) Automatic differentiation in pytorch"},{"key":"2585_CR23","doi-asserted-by":"crossref","unstructured":"Rajagopalan A, Chellappa R (2014) Motion Deblurring: algorithms and systems","DOI":"10.1017\/CBO9781107360181"},{"key":"2585_CR24","doi-asserted-by":"crossref","unstructured":"Ren D et al (2020) Neural blind deconvolution using deep priors. In: 2020 IEEE\/CVF Conference on computer vision and pattern recognition (CVPR), pp 3338\u20133347","DOI":"10.1109\/CVPR42600.2020.00340"},{"key":"2585_CR25","doi-asserted-by":"crossref","unstructured":"Sellent A, Rother C, Roth S (2016) Stereo video deblurring. arXiv:1607.08421","DOI":"10.1007\/978-3-319-46475-6_35"},{"key":"2585_CR26","first-page":"73","volume":"27","author":"Q Shan","year":"2008","unstructured":"Shan Q, Jia J, Agarwala A (2008) High-quality motion deblurring from a single image. ACM Trans Graph 27:73","journal-title":"ACM Trans Graph"},{"key":"2585_CR27","doi-asserted-by":"crossref","unstructured":"Shim G, Park J, Kweon IS (2020) Robust reference-based super-resolution with similarity-aware deformable convolution. In: 2020 IEEE\/CVF conference on computer vision and pattern recognition (CVPR), pp 8422\u20138431","DOI":"10.1109\/CVPR42600.2020.00845"},{"key":"2585_CR28","doi-asserted-by":"crossref","unstructured":"Sun J et al (2015) Learning a convolutional neural network for non-uniform motion blur removal. In: 2015 IEEE Conference on computer vision and pattern recognition (CVPR), pp 769\u2013 777","DOI":"10.1109\/CVPR.2015.7298677"},{"key":"2585_CR29","doi-asserted-by":"crossref","unstructured":"Tao X et al (2018) Scale-recurrent network for deep image deblurring. In: 2018 IEEE\/CVF Conference on computer vision and pattern recognition, pp 8174\u20138182","DOI":"10.1109\/CVPR.2018.00853"},{"issue":"10","key":"2585_CR30","doi-asserted-by":"publisher","first-page":"2357","DOI":"10.1109\/TVCG.2016.2628743","volume":"23","author":"Y Wang","year":"2017","unstructured":"Wang Y et al (2017) The light field attachment: Turning a DSLR into a light field camera using a low budget camera ring. IEEE Tran Vis Comput Graph 23(10):2357\u20132364","journal-title":"IEEE Tran Vis Comput Graph"},{"key":"2585_CR31","doi-asserted-by":"crossref","unstructured":"Xu L, Jia J (2010) Two-phase kernel estimation for robust motion deblurring. In: ECCV","DOI":"10.1007\/978-3-642-15549-9_12"},{"key":"2585_CR32","unstructured":"Xu L et al (2014) Deep convolutional neural network for image deconvolution. In: NIPS"},{"key":"2585_CR33","doi-asserted-by":"crossref","unstructured":"Yan Y et al (2017) Image deblurring via extreme channels prior. In: 2017 IEEE Conference on computer vision and pattern recognition (CVPR), pp 6978\u20136986","DOI":"10.1109\/CVPR.2017.738"},{"key":"2585_CR34","doi-asserted-by":"crossref","unstructured":"Yang F et al (2020) Learning texture transformer network for image super-resolution. In: 2020 IEEE\/CVF conference on computer vision and pattern recognition (CVPR), pp 5790\u2013 5799","DOI":"10.1109\/CVPR42600.2020.00583"},{"key":"2585_CR35","doi-asserted-by":"crossref","unstructured":"Yang F et al (2020) Learning texture transformer network for image super-resolution. In: Proceedings of the IEEE\/CVF conference on computer vision and pattern recognition, pp 5791\u20135800","DOI":"10.1109\/CVPR42600.2020.00583"},{"key":"2585_CR36","doi-asserted-by":"publisher","first-page":"47334","DOI":"10.1109\/ACCESS.2020.2979018","volume":"8","author":"X Yu","year":"2020","unstructured":"Yu X, Ye X, Gao Q (2020) Infrared handprint image restoration algorithm based on apoptotic mechanism. IEEE Access 8:47334\u201347343","journal-title":"IEEE Access"},{"key":"2585_CR37","doi-asserted-by":"crossref","unstructured":"Zamir SW et al (2021) Multi-stage progressive image restoration. arXiv:2102.02808","DOI":"10.1109\/CVPR46437.2021.01458"},{"key":"2585_CR38","doi-asserted-by":"crossref","unstructured":"Zhang J et al (2018) Dynamic scene deblurring using spatially variant recurrent neural networks. In: 2018 IEEE\/CVF Conference on computer vision and pattern recognition, pp 2521\u2013 2529","DOI":"10.1109\/CVPR.2018.00267"},{"key":"2585_CR39","doi-asserted-by":"crossref","unstructured":"Zhang Z et al (2019) Image super-resolution by neural texture transfer. In: 2019 IEEE\/CVF Conference on computer vision and pattern recognition (CVPR), pp 7974\u20137983","DOI":"10.1109\/CVPR.2019.00817"},{"key":"2585_CR40","doi-asserted-by":"crossref","unstructured":"Zhang Z et al (2019) Image super-resolution by neural texture transfer. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 7982\u20137991","DOI":"10.1109\/CVPR.2019.00817"},{"key":"2585_CR41","doi-asserted-by":"crossref","unstructured":"Zheng H et al (2017) Combining exemplar-based approach and learning- based approach for light field super-resolution using a hybrid imaging system. In: 2017 IEEE International conference on computer vision workshops (ICCVW), pp 2481\u20132486","DOI":"10.1109\/ICCVW.2017.292"},{"key":"2585_CR42","doi-asserted-by":"crossref","unstructured":"Zheng H et al (2018) CrossNet: An end-to-end reference-based super resolution network using cross-scale warping. In: ECCV","DOI":"10.1007\/978-3-030-01231-1_6"},{"key":"2585_CR43","doi-asserted-by":"crossref","unstructured":"Zheng H et al (2018) Crossnet: An end-to-end reference-based super resolution network using cross-scale warping. In: Proceedings of the european conference on computer vision (ECCV), pp 88\u2013104","DOI":"10.1007\/978-3-030-01231-1_6"},{"key":"2585_CR44","doi-asserted-by":"crossref","unstructured":"Zheng H et al (2017) Learning cross-scale correspondence and patchbased synthesis for reference-based super-resolution. In: BMVC","DOI":"10.5244\/C.31.138"},{"key":"2585_CR45","unstructured":"Zhou S et al (2020) Cross-scale internal graph neural network for image super-resolution. In: Advances in neural information processing systems 33"}],"container-title":["Applied Intelligence"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s10489-021-02585-y.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s10489-021-02585-y\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s10489-021-02585-y.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,11,6]],"date-time":"2023-11-06T00:46:12Z","timestamp":1699231572000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s10489-021-02585-y"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,7,14]]},"references-count":45,"journal-issue":{"issue":"4","published-print":{"date-parts":[[2022,3]]}},"alternative-id":["2585"],"URL":"https:\/\/doi.org\/10.1007\/s10489-021-02585-y","relation":{},"ISSN":["0924-669X","1573-7497"],"issn-type":[{"value":"0924-669X","type":"print"},{"value":"1573-7497","type":"electronic"}],"subject":[],"published":{"date-parts":[[2021,7,14]]},"assertion":[{"value":"31 May 2021","order":1,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"14 July 2021","order":2,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}}]}}