iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://api.crossref.org/works/10.1007/S10489-021-02430-2
{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,3]],"date-time":"2024-08-03T19:38:18Z","timestamp":1722713898134},"reference-count":50,"publisher":"Springer Science and Business Media LLC","issue":"2","license":[{"start":{"date-parts":[[2021,5,25]],"date-time":"2021-05-25T00:00:00Z","timestamp":1621900800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2021,5,25]],"date-time":"2021-05-25T00:00:00Z","timestamp":1621900800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Appl Intell"],"published-print":{"date-parts":[[2022,1]]},"DOI":"10.1007\/s10489-021-02430-2","type":"journal-article","created":{"date-parts":[[2021,5,25]],"date-time":"2021-05-25T20:02:25Z","timestamp":1621972945000},"page":"1615-1629","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":6,"title":["Adaptive fuzzy-SIFT rule-based registration for 3D cardiac motion estimation"],"prefix":"10.1007","volume":"52","author":[{"given":"Monire Sheikh","family":"Hosseini","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-3386-4003","authenticated-orcid":false,"given":"Mahammad Hassan","family":"Moradi","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2021,5,25]]},"reference":[{"issue":"6","key":"2430_CR1","doi-asserted-by":"publisher","first-page":"2639","DOI":"10.1007\/s00034-017-0687-2","volume":"37","author":"A Saadia","year":"2018","unstructured":"Saadia A, Rashdi A (2018) A speckle noise removal method. Circuits Syst Signal Process 37(6):2639\u20132650. https:\/\/doi.org\/10.1007\/s00034-017-0687-2","journal-title":"Circuits Syst Signal Process"},{"issue":"7","key":"2430_CR2","doi-asserted-by":"publisher","first-page":"1799","DOI":"10.1016\/j.ultrasmedbio.2019.01.010","volume":"45","author":"A Fatemi","year":"2019","unstructured":"Fatemi A, Berg EAR, Rodriguez-Molares A (2019) Studying the origin of reverberation clutter in echocardiography: in vitro experiments and in vivo demonstrations. Ultrasound Med Biol 45(7):1799\u20131813. https:\/\/doi.org\/10.1016\/j.ultrasmedbio.2019.01.010","journal-title":"Ultrasound Med Biol"},{"issue":"3","key":"2430_CR3","doi-asserted-by":"publisher","first-page":"665","DOI":"10.1109\/21.256541","volume":"23","author":"J-SR Jang","year":"1993","unstructured":"Jang J-SR (1993) ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans Syst Man Cybern 23(3):665\u2013685. https:\/\/doi.org\/10.1109\/21.256541","journal-title":"IEEE Trans Syst Man Cybern"},{"key":"2430_CR4","doi-asserted-by":"publisher","unstructured":"Raheja S, Kumar A (2019) Edge detection based on type-1 fuzzy logic and guided smoothening, Evol. Syst., no. 0123456789. https:\/\/doi.org\/10.1007\/s12530-019-09304-6","DOI":"10.1007\/s12530-019-09304-6"},{"issue":"2","key":"2430_CR5","doi-asserted-by":"publisher","first-page":"985","DOI":"10.1109\/TFUZZ.2017.2701313","volume":"26","author":"SD Nguyen","year":"2018","unstructured":"Nguyen SD, Choi S-B, Seo T-I (2018) Recurrent mechanism and impulse noise filter for establishing ANFIS. IEEE Trans Fuzzy Syst 26(2):985\u2013997. https:\/\/doi.org\/10.1109\/TFUZZ.2017.2701313","journal-title":"IEEE Trans Fuzzy Syst"},{"issue":"4","key":"2430_CR6","doi-asserted-by":"publisher","first-page":"510","DOI":"10.1002\/ima.22329","volume":"29","author":"E Nagarathinam","year":"2019","unstructured":"Nagarathinam E, Ponnuchamy T (2019) Image registration-based brain tumor detection and segmentation using ANFIS classification approach. Int J Imaging Syst Technol 29(4):510\u2013517. https:\/\/doi.org\/10.1002\/ima.22329","journal-title":"Int J Imaging Syst Technol"},{"key":"2430_CR7","doi-asserted-by":"publisher","first-page":"33","DOI":"10.1016\/j.cmpb.2018.09.006","volume":"166","author":"A Selvapandian","year":"2018","unstructured":"Selvapandian A, Manivannan K (2018) Fusion based Glioma brain tumor detection and segmentation using ANFIS classification. Comput Methods Prog Biomed 166:33\u201338. https:\/\/doi.org\/10.1016\/j.cmpb.2018.09.006","journal-title":"Comput Methods Prog Biomed"},{"issue":"15","key":"2430_CR8","doi-asserted-by":"publisher","first-page":"11731","DOI":"10.1007\/s00500-019-04635-7","volume":"24","author":"S Chatterjee","year":"2020","unstructured":"Chatterjee S, Das A (2020) A novel systematic approach to diagnose brain tumor using integrated type-II fuzzy logic and ANFIS (adaptive neuro-fuzzy inference system) model. Soft Comput 24(15):11731\u201311754. https:\/\/doi.org\/10.1007\/s00500-019-04635-7","journal-title":"Soft Comput"},{"issue":"2","key":"2430_CR9","doi-asserted-by":"publisher","first-page":"157","DOI":"10.1002\/ima.22170","volume":"26","author":"P Thirumurugan","year":"2016","unstructured":"Thirumurugan P, Shanthakumar P (2016) Brain tumor detection and diagnosis using ANFIS classifier. Int J Imaging Syst Technol 26(2):157\u2013162. https:\/\/doi.org\/10.1002\/ima.22170","journal-title":"Int J Imaging Syst Technol"},{"key":"2430_CR10","doi-asserted-by":"publisher","first-page":"134","DOI":"10.1016\/j.isatra.2018.02.005","volume":"74","author":"N Vafamand","year":"2018","unstructured":"Vafamand N, Arefi MM, Khayatian A (2018) Nonlinear system identification based on Takagi-Sugeno fuzzy modeling and unscented Kalman filter. ISA Trans 74:134\u2013143. https:\/\/doi.org\/10.1016\/j.isatra.2018.02.005","journal-title":"ISA Trans"},{"key":"2430_CR11","doi-asserted-by":"publisher","first-page":"606","DOI":"10.1016\/j.apm.2017.01.019","volume":"45","author":"S Rastegar","year":"2017","unstructured":"Rastegar S, Ara\u00fajo R, Mendes J (2017) Online identification of Takagi\u2013Sugeno fuzzy models based on self-adaptive hierarchical particle swarm optimization algorithm. Appl Math Model 45:606\u2013620. https:\/\/doi.org\/10.1016\/j.apm.2017.01.019","journal-title":"Appl Math Model"},{"issue":"6","key":"2430_CR12","doi-asserted-by":"publisher","first-page":"1417","DOI":"10.1109\/TFUZZ.2016.2639565","volume":"25","author":"CM Salgado","year":"2017","unstructured":"Salgado CM, Viegas JL, Azevedo CS, Ferreira MC, Vieira SM, Sousa JMC (2017) Takagi\u2013Sugeno Fuzzy Modeling Using Mixed Fuzzy Clustering. IEEE Trans Fuzzy Syst 25(6):1417\u20131429. https:\/\/doi.org\/10.1109\/TFUZZ.2016.2639565","journal-title":"IEEE Trans Fuzzy Syst"},{"key":"2430_CR13","doi-asserted-by":"publisher","unstructured":"Precup R-E, Teban T-A, de Oliveira TEA, Petriu EM (2016) Evolving fuzzy models for myoelectric-based control of a prosthetic hand,\u201d in 2016 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), pp. 72\u201377. https:\/\/doi.org\/10.1109\/FUZZ-IEEE.2016.7737670","DOI":"10.1109\/FUZZ-IEEE.2016.7737670"},{"key":"2430_CR14","doi-asserted-by":"publisher","first-page":"34","DOI":"10.1016\/j.ins.2018.12.024","volume":"480","author":"M Kumar","year":"2019","unstructured":"Kumar M, Chatterjee S, Zhang W, Yang J, Kolbe LM (2019) Fuzzy theoretic model based analysis of image features. Inf Sci (Ny) 480:34\u201354. https:\/\/doi.org\/10.1016\/j.ins.2018.12.024","journal-title":"Inf Sci (Ny)"},{"issue":"1","key":"2430_CR15","doi-asserted-by":"publisher","first-page":"195","DOI":"10.1109\/TFUZZ.2015.2451706","volume":"24","author":"M Kumar","year":"2016","unstructured":"Kumar M, Stoll N, Thurow K, Stoll R (2016) Fuzzy membership descriptors for images. IEEE Trans Fuzzy Syst 24(1):195\u2013207. https:\/\/doi.org\/10.1109\/TFUZZ.2015.2451706","journal-title":"IEEE Trans Fuzzy Syst"},{"issue":"12","key":"2430_CR16","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1109\/TFUZZ.2019.2950636","volume":"28","author":"M Kumar","year":"2019","unstructured":"Kumar M, Freudenthaler B (2019) Fuzzy membership functional analysis for nonparametric deep models of image features. IEEE Trans Fuzzy Syst 28(12):1\u20131. https:\/\/doi.org\/10.1109\/TFUZZ.2019.2950636","journal-title":"IEEE Trans Fuzzy Syst"},{"issue":"5","key":"2430_CR17","doi-asserted-by":"publisher","first-page":"1824","DOI":"10.1109\/JSTARS.2017.2664119","volume":"10","author":"X Tang","year":"2017","unstructured":"Tang X, Jiao L, Emery WJ (2017) SAR image content retrieval based on fuzzy similarity and relevance feedback. IEEE J Sel Top Appl Earth Obs Remote Sens 10(5):1824\u20131842. https:\/\/doi.org\/10.1109\/JSTARS.2017.2664119","journal-title":"IEEE J Sel Top Appl Earth Obs Remote Sens"},{"issue":"11","key":"2430_CR18","doi-asserted-by":"publisher","first-page":"951","DOI":"10.1049\/iet-ipr.2014.0670","volume":"9","author":"S Jain","year":"2015","unstructured":"Jain S, Jain A, Verma S, Susan S, Sharma A (2015) Fuzzy match index for scale-invariant feature transform (SIFT) features with application to face recognition with weak supervision. IET Image Process 9(11):951\u2013958. https:\/\/doi.org\/10.1049\/iet-ipr.2014.0670","journal-title":"IET Image Process"},{"key":"2430_CR19","doi-asserted-by":"publisher","first-page":"27","DOI":"10.1007\/978-3-319-91211-0_3","volume":"762","author":"P Zarychta","year":"2019","unstructured":"Zarychta P (2019) Application of fuzzy image concept to medical images matching. Adv Intell Syst Comput 762:27\u201338. https:\/\/doi.org\/10.1007\/978-3-319-91211-0_3","journal-title":"Adv Intell Syst Comput"},{"issue":"4","key":"2430_CR20","doi-asserted-by":"publisher","first-page":"1112","DOI":"10.1007\/s10489-019-01551-z","volume":"50","author":"S Bandyopadhyay","year":"2020","unstructured":"Bandyopadhyay S, Das S, Datta A (2020) A hybrid fuzzy filtering - fuzzy thresholding technique for region of interest detection in noisy images. Appl Intell 50(4):1112\u20131132. https:\/\/doi.org\/10.1007\/s10489-019-01551-z","journal-title":"Appl Intell"},{"issue":"September","key":"2430_CR21","doi-asserted-by":"publisher","first-page":"103283","DOI":"10.1016\/j.micpro.2020.103283","volume":"79","author":"R Radha","year":"2020","unstructured":"Radha R, Gopalakrishnan R (2020) A medical analytical system using intelligent fuzzy level set brain image segmentation based on improved quantum particle swarm optimization. Microprocess Microsyst 79(September):103283. https:\/\/doi.org\/10.1016\/j.micpro.2020.103283","journal-title":"Microprocess Microsyst"},{"key":"2430_CR22","doi-asserted-by":"publisher","unstructured":"Mishro PK, Agrawal S, Panda R, Abraham A (2020) A novel Type-2 fuzzy C-means clustering for brain MR image segmentation. IEEE Trans Cybern:1\u201312. https:\/\/doi.org\/10.1109\/TCYB.2020.2994235","DOI":"10.1109\/TCYB.2020.2994235"},{"issue":"8","key":"2430_CR23","doi-asserted-by":"publisher","first-page":"2939","DOI":"10.1007\/s00500-015-1923-y","volume":"20","author":"F Li","year":"2015","unstructured":"Li F, Shen Q, Li Y, Mac Parthal\u00e1in N (2015) Handwritten Chinese character recognition using fuzzy image alignment. Soft Comput 20(8):2939\u20132949. https:\/\/doi.org\/10.1007\/s00500-015-1923-y","journal-title":"Soft Comput"},{"key":"2430_CR24","doi-asserted-by":"publisher","first-page":"200","DOI":"10.1016\/j.knosys.2017.09.016","volume":"136","author":"G Wang","year":"2017","unstructured":"Wang G, Chen Y (2017) Fuzzy correspondences guided Gaussian mixture model for point set registration. Knowledge-Based Syst 136:200\u2013209. https:\/\/doi.org\/10.1016\/j.knosys.2017.09.016","journal-title":"Knowledge-Based Syst"},{"key":"2430_CR25","doi-asserted-by":"publisher","unstructured":"Wang G, Wang Z, Chen Y, Zhao W, Liu X \u201cFuzzy Correspondences and Kernel Density Estimation for Contaminated Point Set Registration,\u201d in 2015 IEEE international conference on systems. Man Cybern 2015:1936\u20131941. https:\/\/doi.org\/10.1109\/SMC.2015.338","DOI":"10.1109\/SMC.2015.338"},{"key":"2430_CR26","unstructured":"Abhishek K, Sorensen S, Saponaro P, Treible W, Kambhamettu\u00a0C (2017) \"Robust shape registration using fuzzy correspondences.\" arXiv preprint arXiv:1702.05664 ."},{"issue":"1","key":"2430_CR27","doi-asserted-by":"publisher","first-page":"145","DOI":"10.1007\/s10044-020-00909-1","volume":"24","author":"M Ghasemi","year":"2021","unstructured":"Ghasemi M, Kelarestaghi M, Eshghi F, Sharifi A (2021) AFDL: a new adaptive fuzzy dictionary learning for medical image classification. Pattern Anal Applic 24(1):145\u2013164. https:\/\/doi.org\/10.1007\/s10044-020-00909-1","journal-title":"Pattern Anal Applic"},{"issue":"1","key":"2430_CR28","doi-asserted-by":"publisher","first-page":"182","DOI":"10.1007\/s10489-017-0969-1","volume":"48","author":"E Cuevas","year":"2018","unstructured":"Cuevas E, D\u00edaz P, Avalos O, Zald\u00edvar D, P\u00e9rez-Cisneros M (2018) Nonlinear system identification based on ANFIS-Hammerstein model using gravitational search algorithm. Appl Intell 48(1):182\u2013203. https:\/\/doi.org\/10.1007\/s10489-017-0969-1","journal-title":"Appl Intell"},{"issue":"6","key":"2430_CR29","doi-asserted-by":"publisher","first-page":"2233","DOI":"10.1007\/s10489-018-1366-0","volume":"49","author":"A Soltany Mahboob","year":"2019","unstructured":"Soltany Mahboob A, Zahiri SH (2019) Variable length IPO and its application in concurrent design and train of ANFIS systems. Appl Intell 49(6):2233\u20132255. https:\/\/doi.org\/10.1007\/s10489-018-1366-0","journal-title":"Appl Intell"},{"issue":"12","key":"2430_CR30","doi-asserted-by":"publisher","first-page":"2976","DOI":"10.1007\/s10439-020-02628-4","volume":"48","author":"AH Butt","year":"2020","unstructured":"Butt AH, Rovini E, Fujita H, Maremmani C, Cavallo F (2020) Data-driven models for objective grading improvement of Parkinson\u2019s disease. Ann Biomed Eng 48(12):2976\u20132987. https:\/\/doi.org\/10.1007\/s10439-020-02628-4","journal-title":"Ann Biomed Eng"},{"issue":"1","key":"2430_CR31","doi-asserted-by":"publisher","first-page":"172","DOI":"10.1007\/s10489-018-1262-7","volume":"49","author":"LH Son","year":"2019","unstructured":"Son LH, Fujita H (2019) Neural-fuzzy with representative sets for prediction of student performance. Appl Intell 49(1):172\u2013187. https:\/\/doi.org\/10.1007\/s10489-018-1262-7","journal-title":"Appl Intell"},{"key":"2430_CR32","doi-asserted-by":"publisher","first-page":"338","DOI":"10.1016\/j.measurement.2015.07.020","volume":"75","author":"IH Choi","year":"2015","unstructured":"Choi IH, Pak JM, Ahn CK, Lee SH, Lim MT, Song MK (2015) Arbitration algorithm of FIR filter and optical flow based on ANFIS for visual object tracking. Measurement 75:338\u2013353. https:\/\/doi.org\/10.1016\/j.measurement.2015.07.020","journal-title":"Measurement"},{"issue":"14","key":"2430_CR33","doi-asserted-by":"publisher","first-page":"13","DOI":"10.5120\/21607-4639","volume":"121","author":"M Kaur","year":"2015","unstructured":"Kaur M, Pooja P (2015) Wavelet and Curvelet transformation based image fusion with ANFIS and SVM. Int J Comput Appl 121(14):13\u201319. https:\/\/doi.org\/10.5120\/21607-4639","journal-title":"Int J Comput Appl"},{"key":"2430_CR34","doi-asserted-by":"crossref","unstructured":"Hongda M, Wang,\u00a0L Wong KCL, Liu H, Shi P (2011)\u00a0\"Volumetric modeling electromechanics of the heart.\" In International Workshop on Statistical Atlases and Computational Models of the Heart, pp. 224-233. Springer, Berlin, Heidelberg","DOI":"10.1007\/978-3-642-28326-0_23"},{"issue":"10","key":"2430_CR35","doi-asserted-by":"publisher","first-page":"4900","DOI":"10.1109\/TIP.2017.2722689","volume":"26","author":"B Rister","year":"2017","unstructured":"Rister B, Horowitz MA, Rubin DL (2017) Volumetric image registration from invariant Keypoints. IEEE Trans Image Process 26(10):4900\u20134910. https:\/\/doi.org\/10.1109\/TIP.2017.2722689","journal-title":"IEEE Trans Image Process"},{"key":"2430_CR36","doi-asserted-by":"publisher","unstructured":"Ke Y, Sukthankar R (2004) PCA-SIFT: a more distinctive representation for local image descriptors, In Proceedings of the 2004 IEEE computer society conference on computer vision and pattern recognition, 2004. CVPR 2004, vol. 2, pp. 506\u2013513. https:\/\/doi.org\/10.1109\/CVPR.2004.1315206","DOI":"10.1109\/CVPR.2004.1315206"},{"key":"2430_CR37","doi-asserted-by":"publisher","unstructured":"Bersvendsen J et al. (2016) Robust spatio-temporal registration of 4D cardiac ultrasound sequences, vol. 9790, p. 97900F. https:\/\/doi.org\/10.1117\/12.2217005","DOI":"10.1117\/12.2217005"},{"key":"2430_CR38","doi-asserted-by":"publisher","first-page":"524","DOI":"10.1016\/j.compeleceng.2016.11.034","volume":"62","author":"Z Hossein-Nejad","year":"2017","unstructured":"Hossein-Nejad Z, Nasri M (2017) An adaptive image registration method based on SIFT features and RANSAC transform. Comput Electr Eng 62:524\u2013537. https:\/\/doi.org\/10.1016\/j.compeleceng.2016.11.034","journal-title":"Comput Electr Eng"},{"issue":"March","key":"2430_CR39","doi-asserted-by":"publisher","first-page":"107","DOI":"10.1016\/j.compbiomed.2016.09.015","volume":"78","author":"J Yi","year":"2016","unstructured":"Yi J, Yang H, Yang X, Chen G (2016) Lung motion estimation by robust point matching and spatiotemporal tracking for 4D CT. Comput Biol Med 78(March):107\u2013119. https:\/\/doi.org\/10.1016\/j.compbiomed.2016.09.015","journal-title":"Comput Biol Med"},{"issue":"5","key":"2430_CR40","doi-asserted-by":"publisher","first-page":"995","DOI":"10.1109\/TFUZZ.2009.2020154","volume":"17","author":"FL Chung","year":"2009","unstructured":"Chung FL, Deng Z, Wang S (2009) An adaptive fuzzy-inference-rule-based flexible model for automatic elastic image registration. IEEE Trans Fuzzy Syst 17(5):995\u20131010. https:\/\/doi.org\/10.1109\/TFUZZ.2009.2020154","journal-title":"IEEE Trans Fuzzy Syst"},{"issue":"LNCS","key":"2430_CR41","doi-asserted-by":"publisher","first-page":"483","DOI":"10.1007\/978-3-642-38899-6_57","volume":"7945","author":"K McLeod","year":"2013","unstructured":"McLeod K, Seiler C, Toussaint N, Sermesant M, Pennec X (2013) Regional analysis of left ventricle function using a cardiac-specific polyaffine motion model. Lect Notes Comput Sci (including Subser Lect Notes Artif Intell Lect Notes Bioinformatics) 7945(LNCS):483\u2013490. https:\/\/doi.org\/10.1007\/978-3-642-38899-6_57","journal-title":"Lect Notes Comput Sci (including Subser Lect Notes Artif Intell Lect Notes Bioinformatics)"},{"key":"2430_CR42","doi-asserted-by":"publisher","first-page":"91","DOI":"10.1023\/B:VISI.0000029664.99615.94","volume":"60","author":"DG Low","year":"2004","unstructured":"Low DG (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vis 60:91\u2013110","journal-title":"Int J Comput Vis"},{"issue":"7","key":"2430_CR43","doi-asserted-by":"publisher","first-page":"1436","DOI":"10.1109\/TMI.2015.2396632","volume":"34","author":"M Alessandrini","year":"2015","unstructured":"Alessandrini M, de Craene M, Bernard O, Giffard-Roisin S, Allain P, Waechter-Stehle I, Weese J, Saloux E, Delingette H, Sermesant M, D'hooge J (2015) A pipeline for the generation of realistic 3D synthetic echocardiographic sequences: methodology and open-access database. IEEE Trans Med Imaging 34(7):1436\u20131451. https:\/\/doi.org\/10.1109\/TMI.2015.2396632","journal-title":"IEEE Trans Med Imaging"},{"issue":"8","key":"2430_CR44","doi-asserted-by":"publisher","first-page":"1915","DOI":"10.1109\/TMI.2016.2537848","volume":"35","author":"M Alessandrini","year":"2016","unstructured":"Alessandrini M, Heyde B, Queiros S, Cygan S, Zontak M, Somphone O, Bernard O, Sermesant M, Delingette H, Barbosa D, de Craene M, O'Donnell M, Dhooge J (2016) Detailed evaluation of five 3D speckle tracking algorithms using synthetic echocardiographic recordings. IEEE Trans Med Imaging 35(8):1915\u20131926. https:\/\/doi.org\/10.1109\/TMI.2016.2537848","journal-title":"IEEE Trans Med Imaging"},{"key":"2430_CR45","unstructured":"Olivier B, Heyde B, Alessandrini M, Barbosa D, Camarasu-Pop S, Cervenansky F, Valette S et al. (2014) \"Challenge on endocardial three-dimensional ultrasound segmentation (CETUS).\" Proceedings MICCAI challenge on echocardiographic three-dimensional ultrasound segmentation (CETUS) 1-8."},{"issue":"4","key":"2430_CR46","doi-asserted-by":"publisher","first-page":"967","DOI":"10.1109\/TMI.2015.2503890","volume":"35","author":"O Bernard","year":"2016","unstructured":"Bernard O, Bosch JG, Heyde B, Alessandrini M, Barbosa D, Camarasu-Pop S, Cervenansky F, Valette S, Mirea O, Bernier M, Jodoin PM, Domingos JS, Stebbing RV, Keraudren K, Oktay O, Caballero J, Shi W, Rueckert D, Milletari F, Ahmadi SA, Smistad E, Lindseth F, van Stralen M, Wang C, Smedby O, Donal E, Monaghan M, Papachristidis A, Geleijnse ML, Galli E, D'hooge J (2016) Standardized evaluation system for left ventricular segmentation algorithms in 3D echocardiography. IEEE Trans Med Imaging 35(4):967\u2013977. https:\/\/doi.org\/10.1109\/TMI.2015.2503890","journal-title":"IEEE Trans Med Imaging"},{"key":"2430_CR47","unstructured":"Frisch D point2trimesh - Distance between a point and a triangulated surface in 3D, 2021. [Online]. Available: https:\/\/www.mathworks.com\/matlabcentral\/fileexchange\/52882-point2trimesh-distance-between-point-and-triangulated-surface"},{"issue":"3","key":"2430_CR48","doi-asserted-by":"publisher","first-page":"267","DOI":"10.3233\/IFS-1994-2306","volume":"2","author":"SL Chiu","year":"1994","unstructured":"Chiu SL (1994) Fuzzy model identification based on cluster estimation. J Intell Fuzzy Syst 2(3):267\u2013278. https:\/\/doi.org\/10.3233\/IFS-1994-2306","journal-title":"J Intell Fuzzy Syst"},{"issue":"3","key":"2430_CR49","doi-asserted-by":"publisher","first-page":"209","DOI":"10.3233\/IFS-1994-2301","volume":"2","author":"RR Yager","year":"1994","unstructured":"Yager RR, Filev DP (1994) Generation of fuzzy rules by mountain clustering. J Intell Fuzzy Syst 2(3):209\u2013219. https:\/\/doi.org\/10.3233\/IFS-1994-2301","journal-title":"J Intell Fuzzy Syst"},{"issue":"2","key":"2430_CR50","first-page":"81","volume":"17","author":"SR Jammalamadaka","year":"2019","unstructured":"Jammalamadaka SR, Qiu J, Ning N (2019) Predicting a stock portfolio with the multivariate bayesian structural time series model: do news or emotions matter? Int J Artif Intell 17(2):81\u2013104","journal-title":"Int J Artif Intell"}],"container-title":["Applied Intelligence"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s10489-021-02430-2.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s10489-021-02430-2\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s10489-021-02430-2.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,1,24]],"date-time":"2022-01-24T01:13:42Z","timestamp":1642986822000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s10489-021-02430-2"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,5,25]]},"references-count":50,"journal-issue":{"issue":"2","published-print":{"date-parts":[[2022,1]]}},"alternative-id":["2430"],"URL":"https:\/\/doi.org\/10.1007\/s10489-021-02430-2","relation":{},"ISSN":["0924-669X","1573-7497"],"issn-type":[{"value":"0924-669X","type":"print"},{"value":"1573-7497","type":"electronic"}],"subject":[],"published":{"date-parts":[[2021,5,25]]},"assertion":[{"value":"10 April 2021","order":1,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"25 May 2021","order":2,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}},{"order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Declarations"}},{"value":"This article does not contain any studies with human participants performed by any of the authors.","order":2,"name":"Ethics","group":{"name":"EthicsHeading","label":"Ethical approval"}},{"value":"All the authors did not have conflict of interest.","order":3,"name":"Ethics","group":{"name":"EthicsHeading","label":"Conflict of interest"}}]}}