{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,5]],"date-time":"2024-08-05T23:16:12Z","timestamp":1722899772365},"reference-count":59,"publisher":"Springer Science and Business Media LLC","issue":"1","license":[{"start":{"date-parts":[[2020,8,6]],"date-time":"2020-08-06T00:00:00Z","timestamp":1596672000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,8,6]],"date-time":"2020-08-06T00:00:00Z","timestamp":1596672000000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["61806221"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100011457","name":"State Key Laboratory of Soil Plant Machinery System Technology","doi-asserted-by":"crossref","award":["2017ZD131"],"id":[{"id":"10.13039\/501100011457","id-type":"DOI","asserted-by":"crossref"}]},{"name":"Construction System Science and Technology Guidance Project of Jiangsu","award":["2018ZD182"]}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Appl Intell"],"published-print":{"date-parts":[[2021,1]]},"DOI":"10.1007\/s10489-020-01816-y","type":"journal-article","created":{"date-parts":[[2020,8,6]],"date-time":"2020-08-06T09:03:15Z","timestamp":1596704595000},"page":"143-160","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":12,"title":["Solving multi-objective optimization problem using cuckoo search algorithm based on decomposition"],"prefix":"10.1007","volume":"51","author":[{"ORCID":"http:\/\/orcid.org\/0000-0001-8585-0255","authenticated-orcid":false,"given":"Liang","family":"Chen","sequence":"first","affiliation":[]},{"given":"Wenyan","family":"Gan","sequence":"additional","affiliation":[]},{"given":"Hongwei","family":"Li","sequence":"additional","affiliation":[]},{"given":"Kai","family":"Cheng","sequence":"additional","affiliation":[]},{"given":"Darong","family":"Pan","sequence":"additional","affiliation":[]},{"given":"Li","family":"Chen","sequence":"additional","affiliation":[]},{"given":"Zili","family":"Zhang","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2020,8,6]]},"reference":[{"issue":"9","key":"1816_CR1","doi-asserted-by":"crossref","first-page":"2824","DOI":"10.1109\/TCYB.2016.2586191","volume":"47","author":"X Cai","year":"2016","unstructured":"Cai X, Yang Z, Fan Z, Zhang Q (2016) Decomposition-based-sorting and angle-based-selection for evolutionary multiobjective and many-objective optimization. IEEE Trans Cybern 47(9):2824\u20132837","journal-title":"IEEE Trans Cybern"},{"issue":"4","key":"1816_CR2","doi-asserted-by":"crossref","first-page":"282","DOI":"10.1504\/IJBIC.2018.092808","volume":"11","author":"Y Cao","year":"2018","unstructured":"Cao Y, Ding ZM, Xue F, Rong XT (2018) An improved twin support vector machine based on multi-objective cuckoo search for software defect prediction. Int J Bio-Inspired Comput 11(4):282\u2013291","journal-title":"Int J Bio-Inspired Comput"},{"issue":"4","key":"1816_CR3","doi-asserted-by":"crossref","first-page":"315","DOI":"10.1007\/s10462-011-9276-0","volume":"39","author":"P Civicioglu","year":"2013","unstructured":"Civicioglu P, Besdok E (2013) A conceptual comparison of the cuckoo-search, particle swarm optimization, differential evolution and artificial bee colony algorithms. Artif Intell Rev 39(4):315\u2013346","journal-title":"Artif Intell Rev"},{"issue":"2","key":"1816_CR4","doi-asserted-by":"crossref","first-page":"163","DOI":"10.1007\/s10710-005-6164-x","volume":"6","author":"CAC Coello","year":"2005","unstructured":"Coello CAC, Cort\u00e9s NC (2005) Solving multiobjective optimization problems using an artificial immune system. Gen Programm Evol Mach 6(2):163\u2013190","journal-title":"Gen Programm Evol Mach"},{"issue":"3","key":"1816_CR5","doi-asserted-by":"crossref","first-page":"256","DOI":"10.1109\/TEVC.2004.826067","volume":"8","author":"CAC Coello","year":"2004","unstructured":"Coello CAC, Pulido GT, Lechuga MS (2004) Handling multiple objectives with particle swarm optimization. Ieee Trans Evol Comput 8(3):256\u2013279","journal-title":"Ieee Trans Evol Comput"},{"key":"1816_CR6","unstructured":"Deb K (2001) Multi-objective optimization using evolutionary algorithms, vol 16. Wiley, New York"},{"issue":"3","key":"1816_CR7","doi-asserted-by":"crossref","first-page":"1062","DOI":"10.1016\/j.ejor.2006.06.042","volume":"185","author":"K Deb","year":"2008","unstructured":"Deb K (2008) Omni-optimizer: a generic evolutionary algorithm for single and multi-objective optimization. Eur J Oper Res 185(3):1062\u20131087","journal-title":"Eur J Oper Res"},{"issue":"3","key":"1816_CR8","first-page":"115","volume":"9","author":"K Deb","year":"1995","unstructured":"Deb K, Agrawal RB (1995) Simulated binary crossover for continuous search space. Compl Syst 9(3):115\u2013148","journal-title":"Compl Syst"},{"issue":"4","key":"1816_CR9","doi-asserted-by":"crossref","first-page":"371","DOI":"10.1162\/106365602760972767","volume":"10","author":"K Deb","year":"2002","unstructured":"Deb K, Anand A, Joshi D (2002) A computationally efficient evolutionary algorithm for real-parameter optimization. Evol Comput 10(4):371\u2013395","journal-title":"Evol Comput"},{"key":"1816_CR10","unstructured":"Deb K, Goyal M A combined genetic adaptive search (geneas) for engineering design"},{"issue":"4","key":"1816_CR11","doi-asserted-by":"crossref","first-page":"28","DOI":"10.1109\/CI-M.2006.248054","volume":"1","author":"M Dorigo","year":"2006","unstructured":"Dorigo M, Birattari M, St\u00fctzle T (2006) Ant colony optimization. IEEE Comput Intell Mag 1(4):28\u201339","journal-title":"IEEE Comput Intell Mag"},{"issue":"4","key":"1816_CR12","first-page":"407","volume":"5","author":"DE Goldberg","year":"1990","unstructured":"Goldberg DE (1990) Probability matching, the magnitude of reinforcement, and classifier system bidding. Mach Learn 5(4):407\u2013425","journal-title":"Mach Learn"},{"key":"1816_CR13","doi-asserted-by":"crossref","unstructured":"Goncalves R, et al. (2018) A New Hyper-Heuristic based on a Contextual Multi-Armed Bandit for Many-Objective Optimization. IEEE Congress on Evolutionary Computation. 2018. 997\u20131004. https:\/\/ieeexplore.ieee.org\/document\/8477930.","DOI":"10.1109\/CEC.2018.8477930"},{"key":"1816_CR14","doi-asserted-by":"crossref","unstructured":"Goncalves RA, de Almeida CP, Venske SMGS, Delgado MRdBdS, Pozo ATR (2017) A new hyper-heuristic based on a restless multi-armed bandit for multi-objective optimization, pp 390\u2013395","DOI":"10.1109\/BRACIS.2017.67"},{"issue":"2","key":"1816_CR15","doi-asserted-by":"crossref","first-page":"225","DOI":"10.1162\/evco.2008.16.2.225","volume":"16","author":"M Gong","year":"2014","unstructured":"Gong M, Jiao L, Du H, Bo L (2014) Multiobjective immune algorithm with nondominated neighbor-based selection. Evol Comput 16(2):225\u2013255","journal-title":"Evol Comput"},{"issue":"1","key":"1816_CR16","doi-asserted-by":"crossref","first-page":"147","DOI":"10.1527\/tjsai.16.147","volume":"16","author":"T Higuchi","year":"2001","unstructured":"Higuchi T, Tsutsui S, Yamamura M (2001) Simplex crossover for real-coded genetic algolithms. Trans Jpn Soc Artif Intell 16(1):147\u2013155","journal-title":"Trans Jpn Soc Artif Intell"},{"issue":"2","key":"1816_CR17","doi-asserted-by":"crossref","first-page":"294","DOI":"10.1109\/TEVC.2016.2602348","volume":"21","author":"N Hitomi","year":"2017","unstructured":"Hitomi N, Selva D (2017) A classification and comparison of credit assignment strategies in multiobjective adaptive operator selection. IEEE Trans Evol Comput 21(2):294\u2013314","journal-title":"IEEE Trans Evol Comput"},{"issue":"5","key":"1816_CR18","doi-asserted-by":"crossref","first-page":"477","DOI":"10.1109\/TEVC.2005.861417","volume":"10","author":"S Huband","year":"2006","unstructured":"Huband S, Hingston P, Barone L, While L (2006) A review of multiobjective test problems and a scalable test problem toolkit. IEEE Trans Evol Comput 10(5):477\u2013506","journal-title":"IEEE Trans Evol Comput"},{"issue":"2","key":"1816_CR19","doi-asserted-by":"crossref","first-page":"296","DOI":"10.1109\/TEVC.2017.2707980","volume":"22","author":"S Jiang","year":"2018","unstructured":"Jiang S, Yang S, Wang Y, Liu X (2018) Scalarizing functions in decomposition-based multiobjective evolutionary algorithms. IEEE Trans Evol Comput 22(2):296\u2013313","journal-title":"IEEE Trans Evol Comput"},{"key":"1816_CR20","unstructured":"Kennedy J, Eberhart R Particle swarm optimization. In: Icnn95-international Conference on Neural Networks"},{"issue":"2","key":"1816_CR21","doi-asserted-by":"crossref","first-page":"284","DOI":"10.1109\/TEVC.2008.925798","volume":"13","author":"H Li","year":"2009","unstructured":"Li H, Zhang Q (2009) Multiobjective optimization problems with complicated pareto sets, moea\/d and nsga-ii. IEEE Trans Evol Comput 13(2):284\u2013302","journal-title":"IEEE Trans Evol Comput"},{"issue":"1","key":"1816_CR22","doi-asserted-by":"crossref","first-page":"114","DOI":"10.1109\/TEVC.2013.2239648","volume":"18","author":"K Li","year":"2014","unstructured":"Li K, Fialho A, Kwong S, Zhang Q (2014) Adaptive operator selection with bandits for a multiobjective evolutionary algorithm based on decomposition. IEEE Trans Evol Comput 18(1):114\u2013 130","journal-title":"IEEE Trans Evol Comput"},{"issue":"6","key":"1816_CR23","doi-asserted-by":"crossref","first-page":"909","DOI":"10.1109\/TEVC.2013.2293776","volume":"18","author":"K Li","year":"2014","unstructured":"Li K, Zhang Q, Kwong S, Li M, Wang R (2014) Stable matching based selection in evolutionary multiobjective optimization. IEEE Trans Evol Comput 18(6):909\u2013923","journal-title":"IEEE Trans Evol Comput"},{"key":"1816_CR24","unstructured":"Liagkouras K, Metaxiotis K An elitist polynomial mutation operator for improved performance of moeas in computer networks. In: International Conference on Computer Communications & Networks"},{"key":"1816_CR25","doi-asserted-by":"crossref","first-page":"332","DOI":"10.1016\/j.ins.2015.12.022","volume":"339","author":"Q Lin","year":"2016","unstructured":"Lin Q, Liu Z, Yan Q, Du Z, Coello CAC, Liang Z, Wang W, Chen J (2016) Adaptive composite operator selection and parameter control for multiobjective evolutionary algorithm. Inf Sci 339:332\u2013352","journal-title":"Inf Sci"},{"issue":"2","key":"1816_CR26","doi-asserted-by":"crossref","first-page":"226","DOI":"10.1109\/TEVC.2017.2704118","volume":"22","author":"X Ma","year":"2018","unstructured":"Ma X, Zhang Q, Tian GD, Yang JS, Zhu ZX (2018) On tchebycheff decomposition approaches for multiobjective evolutionary optimization. IEEE Trans Evol Comput 22(2):226\u2013244","journal-title":"IEEE Trans Evol Comput"},{"key":"1816_CR27","doi-asserted-by":"crossref","first-page":"228","DOI":"10.1016\/j.knosys.2015.07.006","volume":"89","author":"S Mirjalili","year":"2015","unstructured":"Mirjalili S (2015) Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm. Knowl-Based Syst 89:228\u2013249","journal-title":"Knowl-Based Syst"},{"key":"1816_CR28","doi-asserted-by":"crossref","first-page":"51","DOI":"10.1016\/j.advengsoft.2016.01.008","volume":"95","author":"S Mirjalili","year":"2016","unstructured":"Mirjalili S, Lewis A (2016) The whale optimization algorithm. Adv Eng Softw 95:51\u201367","journal-title":"Adv Eng Softw"},{"key":"1816_CR29","doi-asserted-by":"crossref","unstructured":"Nakanishi H, Kinjo H, Oshiro N, Yamamoto T (2007) Searching performance of a real-coded genetic algorithm using biased probability distribution functions and mutation. Artif Life Robot 11(1)","DOI":"10.1007\/s10015-006-0396-6"},{"key":"1816_CR30","doi-asserted-by":"crossref","first-page":"73","DOI":"10.1016\/j.swevo.2017.05.006","volume":"37","author":"TT Nguyen","year":"2017","unstructured":"Nguyen TT, Vo DN (2017) Modified cuckoo search algorithm for multiobjective short-term hydrothermal scheduling. Swarm Evol Comput 37:73\u201389","journal-title":"Swarm Evol Comput"},{"key":"1816_CR31","doi-asserted-by":"crossref","first-page":"863","DOI":"10.1016\/j.asoc.2016.09.039","volume":"52","author":"DM Pierre","year":"2017","unstructured":"Pierre DM, Zakaria N (2017) Stochastic partially optimized cyclic shift crossover for multi-objective genetic algorithms for the vehicle routing problem with time-windows. Appl Soft Comput 52:863\u2013876","journal-title":"Appl Soft Comput"},{"issue":"2","key":"1816_CR32","doi-asserted-by":"crossref","first-page":"231","DOI":"10.1162\/EVCO_a_00109","volume":"22","author":"Y Qi","year":"2014","unstructured":"Qi Y, Ma X, Liu F, Jiao L, Sun J, Wu J (2014) Moea\/d with adaptive weight adjustment. Evol Comput 22(2):231\u2013264","journal-title":"Evol Comput"},{"issue":"2","key":"1816_CR33","doi-asserted-by":"crossref","first-page":"232","DOI":"10.1109\/TEVC.2015.2433672","volume":"20","author":"X Qiu","year":"2016","unstructured":"Qiu X, Xu JX, Tan KC, Abbass HA (2016) Adaptive cross-generation differential evolution operators for multiobjective optimization. IEEE Trans Evol Comput 20(2):232\u2013244","journal-title":"IEEE Trans Evol Comput"},{"key":"1816_CR34","doi-asserted-by":"crossref","first-page":"20","DOI":"10.1016\/j.engappai.2017.04.018","volume":"63","author":"V Savsani","year":"2017","unstructured":"Savsani V, Tawhid MA (2017) Non-dominated sorting moth flame optimization (ns-mfo) for multi-objective problems. Eng Appl Artif Intell 63:20\u201332","journal-title":"Eng Appl Artif Intell"},{"issue":"10","key":"1816_CR35","doi-asserted-by":"crossref","first-page":"2041","DOI":"10.1007\/s00500-011-0704-5","volume":"15","author":"K Sindhya","year":"2011","unstructured":"Sindhya K, Ruuska S, Haanpaa T, Miettinen K (2011) A new hybrid mutation operator for multiobjective optimization with differential evolution. Soft Comput 15(10):2041\u20132055","journal-title":"Soft Comput"},{"issue":"4","key":"1816_CR36","doi-asserted-by":"crossref","first-page":"341","DOI":"10.1023\/A:1008202821328","volume":"11","author":"R Storn","year":"1997","unstructured":"Storn R, Price K (1997) Differential evolution - a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim 11(4):341\u2013359","journal-title":"J Glob Optim"},{"issue":"4","key":"1816_CR37","doi-asserted-by":"crossref","first-page":"341","DOI":"10.1023\/A:1008202821328","volume":"11","author":"R Storn","year":"1997","unstructured":"Storn R, Price K (1997) Differential evolution \u2013 a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim 11(4):341\u2013359","journal-title":"J Glob Optim"},{"issue":"1-3","key":"1816_CR38","doi-asserted-by":"crossref","first-page":"151","DOI":"10.1016\/S0303-2647(99)00093-3","volume":"55","author":"A Tarakanov","year":"2000","unstructured":"Tarakanov A, Dasgupta D (2000) A formal model of an artificial immune system. Biosystems 55(1-3):151\u2013158","journal-title":"Biosystems"},{"key":"1816_CR39","doi-asserted-by":"crossref","first-page":"77","DOI":"10.1007\/978-3-540-69432-8_4","volume":"54","author":"D Thierens","year":"2007","unstructured":"Thierens D (2007) Adaptive strategies for operator allocation. Parameter Sett Evol Algorithm 54:77\u201390","journal-title":"Parameter Sett Evol Algorithm"},{"issue":"4","key":"1816_CR40","doi-asserted-by":"crossref","first-page":"73","DOI":"10.1109\/MCI.2017.2742868","volume":"12","author":"Y Tian","year":"2017","unstructured":"Tian Y, Cheng R, Zhang X, Jin Y (2017) Platemo: a matlab platform for evolutionary multi-objective optimization. IEEE Comput Intell Mag 12(4):73\u201387","journal-title":"IEEE Comput Intell Mag"},{"issue":"3","key":"1816_CR41","doi-asserted-by":"crossref","first-page":"708","DOI":"10.1073\/pnas.0610471104","volume":"104","author":"JA Vrugt","year":"2007","unstructured":"Vrugt JA, Robinson BA (2007) Improved evolutionary optimization from genetically adaptive multimethod search. Proc Natl Acad Sci USA 104(3):708\u2013711","journal-title":"Proc Natl Acad Sci USA"},{"key":"1816_CR42","doi-asserted-by":"crossref","first-page":"344","DOI":"10.1016\/j.apenergy.2017.10.031","volume":"208","author":"JZ Wang","year":"2017","unstructured":"Wang JZ, Du P, Niu T, Yang WD (2017) A novel hybrid system based on a new proposed algorithm-multi-objective whale optimization algorithm for wind speed forecasting. Appl Energy 208:344\u2013360","journal-title":"Appl Energy"},{"issue":"6","key":"1816_CR43","doi-asserted-by":"crossref","first-page":"821","DOI":"10.1109\/TEVC.2016.2521175","volume":"20","author":"R Wang","year":"2016","unstructured":"Wang R, Zhang Q, Zhang T (2016) Decomposition based algorithms using pareto adaptive scalarizing methods. IEEE Trans Evol Comput 20(6):821\u2013837","journal-title":"IEEE Trans Evol Comput"},{"key":"1816_CR44","unstructured":"Wang Z, Zhang Q, Li H Balancing convergence and diversity by using two different reproduction operators in moea\/d: Some preliminary work. In: IEEE International Conference on Systems, Man, and Cybernetics, pp. 2849\u20132854"},{"issue":"1","key":"1816_CR45","doi-asserted-by":"crossref","first-page":"67","DOI":"10.1109\/4235.585893","volume":"1","author":"DH Wolpert","year":"1997","unstructured":"Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE Trans Evol Comput 1(1):67\u201382","journal-title":"IEEE Trans Evol Comput"},{"issue":"99","key":"1816_CR46","first-page":"1","volume":"PP","author":"M Wu","year":"2018","unstructured":"Wu M, Ke L, Kwong S, Zhang Q, Zhang J (2018) Learning to decompose: a paradigm for decomposition-based multiobjective optimization. IEEE Trans Evol Comput PP(99):1\u20131","journal-title":"IEEE Trans Evol Comput"},{"issue":"3","key":"1816_CR47","doi-asserted-by":"crossref","first-page":"411","DOI":"10.1016\/j.cie.2007.08.003","volume":"54","author":"B Yagmahan","year":"2008","unstructured":"Yagmahan B, Yenisey MM (2008) Ant colony optimization for multi-objective flow shop scheduling problem. Comput Ind Eng 54(3):411\u2013420","journal-title":"Comput Ind Eng"},{"issue":"6","key":"1816_CR48","doi-asserted-by":"crossref","first-page":"1616","DOI":"10.1016\/j.cor.2011.09.026","volume":"40","author":"XS Yang","year":"2013","unstructured":"Yang XS, Deb S (2013) Multiobjective cuckoo search for design optimization. Comput Oper Res 40(6):1616\u20131624","journal-title":"Comput Oper Res"},{"issue":"1","key":"1816_CR49","doi-asserted-by":"crossref","first-page":"169","DOI":"10.1007\/s00521-013-1367-1","volume":"24","author":"XS Yang","year":"2014","unstructured":"Yang XS, Deb S (2014) Cuckoo search: recent advances and applications. Neural Comput Appl 24(1):169\u2013174","journal-title":"Neural Comput Appl"},{"issue":"2","key":"1816_CR50","doi-asserted-by":"crossref","first-page":"180","DOI":"10.1109\/TEVC.2015.2443001","volume":"20","author":"Y Yuan","year":"2016","unstructured":"Yuan Y, Xu H, Wang B, Zhang B, Yao X (2016) Balancing convergence and diversity in decomposition-based many-objective optimizers. IEEE Trans Evol Comput 20(2):180\u2013198","journal-title":"IEEE Trans Evol Comput"},{"issue":"9","key":"1816_CR51","doi-asserted-by":"crossref","first-page":"2907","DOI":"10.1007\/s00521-017-2884-0","volume":"30","author":"KR Zalik","year":"2018","unstructured":"Zalik KR, Zalik B (2018) Multi-objective evolutionary algorithm using problem-specific genetic operators for community detection in networks. Neural Comput Appl 30(9):2907\u20132920","journal-title":"Neural Comput Appl"},{"key":"1816_CR52","doi-asserted-by":"crossref","unstructured":"Zhang Q, Liu W, Li H The performance of a new version of moea\/d. In: 2009. CEC \u201909. IEEE Congress on Evolutionary Computation, pp 203\u2013208","DOI":"10.1109\/CEC.2009.4982949"},{"issue":"6","key":"1816_CR53","doi-asserted-by":"crossref","first-page":"712","DOI":"10.1109\/TEVC.2007.892759","volume":"11","author":"Q Zhang","year":"2007","unstructured":"Zhang Q, Li H (2007) Moea\/d: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans Evol Comput 11(6):712\u2013731","journal-title":"IEEE Trans Evol Comput"},{"issue":"3","key":"1816_CR54","doi-asserted-by":"crossref","first-page":"442","DOI":"10.1109\/TEVC.2011.2166159","volume":"16","author":"SZ Zhao","year":"2012","unstructured":"Zhao SZ, Suganthan PN, Zhang Q (2012) Decomposition-based multiobjective evolutionary algorithm with an ensemble of neighborhood sizes. IEEE Trans Evol Comput 16(3):442\u2013446","journal-title":"IEEE Trans Evol Comput"},{"issue":"16","key":"1816_CR55","doi-asserted-by":"crossref","first-page":"4765","DOI":"10.1080\/00207543.2017.1292064","volume":"55","author":"JJ Zhou","year":"2017","unstructured":"Zhou JJ, Yao XF (2017) A hybrid approach combining modified artificial bee colony and cuckoo search algorithms for multi-objective cloud manufacturing service composition. Int J Prod Res 55(16):4765\u20134784","journal-title":"Int J Prod Res"},{"key":"1816_CR56","doi-asserted-by":"crossref","first-page":"177","DOI":"10.1016\/j.ins.2016.01.046","volume":"345","author":"QL Zhu","year":"2016","unstructured":"Zhu QL, Lin QZ, Du ZH, Liang ZP, Wang WJ, Zhu ZX, Chen JY, Huang PZ, Ming Z (2016) A novel adaptive hybrid crossover operator for multiobjective evolutionary algorithm. Inf Sci 345:177\u2013198","journal-title":"Inf Sci"},{"issue":"2","key":"1816_CR57","doi-asserted-by":"crossref","first-page":"173","DOI":"10.1162\/106365600568202","volume":"8","author":"E Zitzler","year":"2000","unstructured":"Zitzler E, Deb K, Thiele L (2000) Comparison of multiobjective evolutionary algorithms: Empirical results. Evol Comput 8(2):173\u2013195","journal-title":"Evol Comput"},{"issue":"4","key":"1816_CR58","doi-asserted-by":"crossref","first-page":"257","DOI":"10.1109\/4235.797969","volume":"3","author":"E Zitzler","year":"1999","unstructured":"Zitzler E, Thiele L (1999) Multiobjective evolutionary algorithms: a comparative case study and the strength pareto approach. IEEE Trans Evol Comput 3(4):257\u2013271","journal-title":"IEEE Trans Evol Comput"},{"issue":"2","key":"1816_CR59","doi-asserted-by":"crossref","first-page":"117","DOI":"10.1109\/TEVC.2003.810758","volume":"7","author":"E Zitzler","year":"2003","unstructured":"Zitzler E, Thiele L, Laumanns M, Fonseca CM, Fonseca VGD (2003) Performance assessment of multiobjective optimizers: an analysis and review. IEEE Trans Evol Comput 7(2):117\u2013132","journal-title":"IEEE Trans Evol Comput"}],"container-title":["Applied Intelligence"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s10489-020-01816-y.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s10489-020-01816-y\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s10489-020-01816-y.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2021,8,6]],"date-time":"2021-08-06T00:04:02Z","timestamp":1628208242000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s10489-020-01816-y"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020,8,6]]},"references-count":59,"journal-issue":{"issue":"1","published-print":{"date-parts":[[2021,1]]}},"alternative-id":["1816"],"URL":"http:\/\/dx.doi.org\/10.1007\/s10489-020-01816-y","relation":{},"ISSN":["0924-669X","1573-7497"],"issn-type":[{"value":"0924-669X","type":"print"},{"value":"1573-7497","type":"electronic"}],"subject":[],"published":{"date-parts":[[2020,8,6]]},"assertion":[{"value":"6 August 2020","order":1,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}}]}}