iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://api.crossref.org/works/10.1007/S10462-024-10764-9
{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,3]],"date-time":"2024-09-03T14:22:52Z","timestamp":1725373372772},"reference-count":289,"publisher":"Springer Science and Business Media LLC","issue":"6","license":[{"start":{"date-parts":[[2024,5,30]],"date-time":"2024-05-30T00:00:00Z","timestamp":1717027200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0"},{"start":{"date-parts":[[2024,5,30]],"date-time":"2024-05-30T00:00:00Z","timestamp":1717027200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0"}],"funder":[{"name":"National Funded Postdoctoral Fellowship Program","award":["GZB20230685"]},{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["No. 42277161","No. 42230709"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Artif Intell Rev"],"abstract":"Abstract<\/jats:title>Data mining and analysis are critical for preventing or mitigating natural hazards. However, data availability in natural hazard analysis is experiencing unprecedented challenges due to economic, technical, and environmental constraints. Recently, generative deep learning has become an increasingly attractive solution to these challenges, which can augment, impute, or synthesize data based on these learned complex, high-dimensional probability distributions of data. Over the last several years, much research has demonstrated the remarkable capabilities of generative deep learning for addressing data-related problems in natural hazards analysis. Data processed by deep generative models can be utilized to describe the evolution or occurrence of natural hazards and contribute to subsequent natural hazard modeling. Here we present a comprehensive review concerning generative deep learning for data generation in natural hazard analysis. (1) We summarized the limitations associated with data availability in natural hazards analysis and identified the fundamental motivations for employing generative deep learning as a critical response to these challenges. (2) We discuss several deep generative models that have been applied to overcome the problems caused by limited data availability in natural hazards analysis. (3) We analyze advances in utilizing generative deep learning for data generation in natural hazard analysis. (4) We discuss challenges associated with leveraging generative deep learning in natural hazard analysis. (5) We explore further opportunities for leveraging generative deep learning in natural hazard analysis. This comprehensive review provides a detailed roadmap for scholars interested in applying generative models for data generation in natural hazard analysis.<\/jats:p>","DOI":"10.1007\/s10462-024-10764-9","type":"journal-article","created":{"date-parts":[[2024,5,30]],"date-time":"2024-05-30T06:02:58Z","timestamp":1717048978000},"update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":2,"title":["Generative deep learning for data generation in natural hazard analysis: motivations, advances, challenges, and opportunities"],"prefix":"10.1007","volume":"57","author":[{"given":"Zhengjing","family":"Ma","sequence":"first","affiliation":[]},{"given":"Gang","family":"Mei","sequence":"additional","affiliation":[]},{"given":"Nengxiong","family":"Xu","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2024,5,30]]},"reference":[{"key":"10764_CR1","doi-asserted-by":"publisher","first-page":"243","DOI":"10.1016\/j.inffus.2021.05.008","volume":"76","author":"M Abdar","year":"2021","unstructured":"Abdar M, Pourpanah F, Hussain S et al (2021) A review of uncertainty quantification in deep learning: techniques, applications and challenges. Inf Fusion 76:243\u2013297. https:\/\/doi.org\/10.1016\/j.inffus.2021.05.008","journal-title":"Inf Fusion"},{"key":"10764_CR2","unstructured":"Adeli E, Zhang J, Taflanidis AA (2021) Convolutional generative adversarial imputation networks for spatio-temporal missing data in storm surge simulations. arXiv preprint abs\/2111.02823:1\u201332. arXiv:2111.02823"},{"key":"10764_CR3","doi-asserted-by":"publisher","first-page":"265","DOI":"10.1016\/j.rse.2015.07.011","volume":"168","author":"I Ahmad Abir","year":"2015","unstructured":"Ahmad Abir I, Khan S, Ghulam A et al (2015) Active tectonics of western potwar plateau-salt range, northern Pakistan from INSAR observations and seismic imaging. Remote Sens Environ 168:265\u2013275. https:\/\/doi.org\/10.1016\/j.rse.2015.07.011","journal-title":"Remote Sens Environ"},{"key":"10764_CR4","unstructured":"Akhmadiev R, Kanfar RS (2019) Subsurface imaging using GANS. Np URL: http:\/\/cs229stanfordedu\/proj2019aut pp 1\u20136"},{"issue":"2","key":"10764_CR5","doi-asserted-by":"publisher","first-page":"625","DOI":"10.1016\/j.gsf.2020.09.002","volume":"12","author":"H Al-Najjar","year":"2021","unstructured":"Al-Najjar H, Pradhan B (2021) Spatial landslide susceptibility assessment using machine learning techniques assisted by additional data created with generative adversarial networks. Geosci Front 12(2):625\u2013637. https:\/\/doi.org\/10.1016\/j.gsf.2020.09.002","journal-title":"Geosci Front"},{"key":"10764_CR6","doi-asserted-by":"publisher","first-page":"1","DOI":"10.3390\/rs13194011","volume":"13","author":"H Al-Najjar","year":"2021","unstructured":"Al-Najjar H, Pradhan B, Sarkar R et al (2021) A new integrated approach for landslide data balancing and spatial prediction based on generative adversarial networks (GAN). Remote Sens 13:1\u201330. https:\/\/doi.org\/10.3390\/rs13194011","journal-title":"Remote Sens"},{"key":"10764_CR7","doi-asserted-by":"publisher","first-page":"115","DOI":"10.1016\/j.isprsjprs.2020.02.002","volume":"162","author":"MU Ali","year":"2020","unstructured":"Ali MU, Sultani W, Ali M (2020) Destruction from sky: weakly supervised approach for destruction detection in satellite imagery. ISPRS J Photogramm Remote Sens 162:115\u2013124. https:\/\/doi.org\/10.1016\/j.isprsjprs.2020.02.002","journal-title":"ISPRS J Photogramm Remote Sens"},{"key":"10764_CR8","doi-asserted-by":"publisher","unstructured":"Alwon S (2019) Generative adversarial networks in seismic data processing. pp 1991\u20131995, https:\/\/doi.org\/10.1190\/segam2018-2996002.1","DOI":"10.1190\/segam2018-2996002.1"},{"key":"10764_CR9","doi-asserted-by":"publisher","DOI":"10.1175\/AIES-D-23-0015.1","author":"NJ Annau","year":"2023","unstructured":"Annau NJ, Cannon AJ, Monahan AH (2023) Algorithmic hallucinations of near-surface winds: statistical downscaling with generative adversarial networks to convection-permitting scales. Artif l Earth Ssyst. https:\/\/doi.org\/10.1175\/AIES-D-23-0015.1","journal-title":"Artif l Earth Ssyst"},{"issue":"2","key":"10764_CR10","doi-asserted-by":"publisher","first-page":"1473","DOI":"10.5194\/hess-22-1473-2018","volume":"22","author":"T Assump\u00e7\u00e3o","year":"2018","unstructured":"Assump\u00e7\u00e3o T, Popescu I, Jonoski A et al (2018) Citizen observations contributing to flood modelling: opportunities and challenges. Hydrol Earth Syst Sci 22(2):1473\u20131489. https:\/\/doi.org\/10.5194\/hess-22-1473-2018","journal-title":"Hydrol Earth Syst Sci"},{"issue":"4","key":"10764_CR11","doi-asserted-by":"publisher","first-page":"1265","DOI":"10.1029\/2019RG000668","volume":"57","author":"E Astafyeva","year":"2019","unstructured":"Astafyeva E (2019) Ionospheric detection of natural hazards. Rev Geophys 57(4):1265\u20131288. https:\/\/doi.org\/10.1029\/2019RG000668","journal-title":"Rev Geophys"},{"key":"10764_CR12","doi-asserted-by":"publisher","unstructured":"Barajas CA, Gobbert MK, Wang J (2020) Tornado storm data synthesization using deep convolutional generative adversarial network: Related works and implementation details. pp 1\u20136, https:\/\/doi.org\/10.13016\/M2GGLO-BTJ5","DOI":"10.13016\/M2GGLO-BTJ5"},{"key":"10764_CR13","doi-asserted-by":"publisher","first-page":"80","DOI":"10.1038\/s41558-021-00986-y","volume":"11","author":"P Bauer","year":"2021","unstructured":"Bauer P, Stevens B, Hazeleger W (2021) A digital twin of earth for the green transition. Nat Clim Change 11:80\u201383. https:\/\/doi.org\/10.1038\/s41558-021-00986-y","journal-title":"Nat Clim Change"},{"key":"10764_CR14","doi-asserted-by":"publisher","DOI":"10.1126\/science.aau0323","author":"KJ Bergen","year":"2019","unstructured":"Bergen KJ, Johnson PA, de Hoop MV et al (2019) Machine learning for data-driven discovery in solid earth geoscience. Science. https:\/\/doi.org\/10.1126\/science.aau0323","journal-title":"Science"},{"issue":"3","key":"10764_CR15","doi-asserted-by":"publisher","first-page":"347","DOI":"10.5194\/npg-28-347-2021","volume":"28","author":"C Besombes","year":"2021","unstructured":"Besombes C, Pannekoucke O, Lapeyre C et al (2021) Producing realistic climate data with generative adversarial networks. Nonlinear Processes Geophys 28(3):347\u2013370. https:\/\/doi.org\/10.5194\/npg-28-347-2021","journal-title":"Nonlinear Processes Geophys"},{"key":"10764_CR16","doi-asserted-by":"publisher","DOI":"10.5194\/GMD-2021-164","author":"V Bessenbacher","year":"2021","unstructured":"Bessenbacher V, Seneviratne SI, Gudmundsson L (2021) Climfill: a framework for intelligently gap-filling earth observations. Geosci Model Dev Discuss. https:\/\/doi.org\/10.5194\/GMD-2021-164","journal-title":"Geosci Model Dev Discuss"},{"issue":"11","key":"10764_CR17","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1029\/2021EF002340","volume":"9","author":"E Bevacqua","year":"2021","unstructured":"Bevacqua E, De Michele C, Manning C et al (2021) Guidelines for studying diverse types of compound weather and climate events. Earth\u2019s Future 9(11):1\u201323. https:\/\/doi.org\/10.1029\/2021EF002340","journal-title":"Earth\u2019s Future"},{"key":"10764_CR18","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1038\/s41467-020-17587-6","volume":"11","author":"J Biggs","year":"2020","unstructured":"Biggs J, Wright T (2020) How satellite INSAR has grown from opportunistic science to routine monitoring over the last decade. Nat Commun 11:1\u20134. https:\/\/doi.org\/10.1038\/s41467-020-17587-6","journal-title":"Nat Commun"},{"key":"10764_CR19","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1016\/j.neunet.2021.02.003","volume":"139","author":"A Bihlo","year":"2021","unstructured":"Bihlo A (2021) A generative adversarial network approach to (ensemble) weather prediction. Neural Netw 139:1\u201316. https:\/\/doi.org\/10.1016\/j.neunet.2021.02.003","journal-title":"Neural Netw"},{"key":"10764_CR20","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1109\/TPAMI.2021.3116668","volume":"44","author":"S Bond-Taylor","year":"2021","unstructured":"Bond-Taylor S, Leach A, Long Y et al (2021) Deep generative modelling: a comparative review of VAES, GANS, normalizing flows, energy-based and autoregressive models. IEEE Trans Pattern Anal 44:1\u201320. https:\/\/doi.org\/10.1109\/TPAMI.2021.3116668","journal-title":"IEEE Trans Pattern Anal"},{"key":"10764_CR21","doi-asserted-by":"crossref","unstructured":"Boulaguiem Y, Zscheischler J, Vignotto E, et\u00a0al (2022) Modeling and simulating spatial extremes by combining extreme value theory with generative adversarial networks. Environmental Data Science abs\/2104.12469:1\u201324. arXiv:2111.00267","DOI":"10.1017\/eds.2022.4"},{"key":"10764_CR22","unstructured":"Brown SK, Sparks R, Mee K, et\u00a0al (2014) Regional and country profiles of volcanic hazard and risk: Report iv of the gvm\/iavcei contribution to the global assessment report on disaster risk reduction 2015. United Nations Office for Disaster Risk Reduction pp 1\u201340"},{"key":"10764_CR23","doi-asserted-by":"publisher","DOI":"10.1002\/9781119646181","volume-title":"Deep learning for the earth sciences: a comprehensive approach to remote sensing, climate science and geosciences","author":"G Camps-Valls","year":"2021","unstructured":"Camps-Valls G, Tuia D, Zhu XX et al (2021) Deep learning for the earth sciences: a comprehensive approach to remote sensing, climate science and geosciences. Wiley, Hoboken"},{"issue":"2","key":"10764_CR24","doi-asserted-by":"publisher","first-page":"489","DOI":"10.1109\/TIT.2005.862083","volume":"52","author":"E Cand\u00e8s","year":"2006","unstructured":"Cand\u00e8s E, Romberg J, Tao T (2006) Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans Inf Theory 52(2):489\u2013509. https:\/\/doi.org\/10.1109\/TIT.2005.862083","journal-title":"IEEE Trans Inf Theory"},{"issue":"7","key":"10764_CR25","doi-asserted-by":"publisher","first-page":"458","DOI":"10.1038\/s43017-021-00174-8","volume":"2","author":"L Caricchi","year":"2021","unstructured":"Caricchi L, Townsend M, Rivalta E et al (2021) The build-up and triggers of volcanic eruptions. Nat Rev Earth Environ 2(7):458\u2013476. https:\/\/doi.org\/10.1038\/s43017-021-00174-8","journal-title":"Nat Rev Earth Environ"},{"key":"10764_CR26","doi-asserted-by":"publisher","DOI":"10.1016\/j.wace.2023.100580","volume":"41","author":"J Carreau","year":"2023","unstructured":"Carreau J, Naveau P (2023) A spatially adaptive multi-resolution generative algorithm: application to simulating flood wave propagation. Weather Clim Extremes 41:100580. https:\/\/doi.org\/10.1016\/j.wace.2023.100580","journal-title":"Weather Clim Extremes"},{"issue":"10","key":"10764_CR27","doi-asserted-by":"publisher","first-page":"1856","DOI":"10.1109\/LGRS.2020.3008478","volume":"18","author":"D Chang","year":"2021","unstructured":"Chang D, Yang W, Yong X et al (2021) Seismic data interpolation using dual-domain conditional generative adversarial networks. IEEE Geosci Remote Sens Lett 18(10):1856\u20131860. https:\/\/doi.org\/10.1109\/LGRS.2020.3008478","journal-title":"IEEE Geosci Remote Sens Lett"},{"key":"10764_CR28","unstructured":"Chen X, Feng K, Liu N, et\u00a0al (2020) Rainnet: A large-scale dataset for spatial precipitation downscaling. arXiv preprint abs\/2012.09700:1\u201318. arXiv:2012.09700"},{"key":"10764_CR29","doi-asserted-by":"publisher","first-page":"2513","DOI":"10.1007\/s10346-022-01918-3","volume":"19","author":"X Chen","year":"2022","unstructured":"Chen X, Hu X, Ma G et al (2022) Predictive model of regional coseismic landslides permanent displacement considering uncertainty. Landslides 19:2513\u20132534. https:\/\/doi.org\/10.1007\/s10346-022-01918-3","journal-title":"Landslides"},{"issue":"7","key":"10764_CR30","doi-asserted-by":"publisher","first-page":"2109","DOI":"10.1029\/2018GC007489","volume":"19","author":"Y Chen","year":"2018","unstructured":"Chen Y, Meng L, Zhang A et al (2018) Source complexity of the 2015 mw 7.9 bonin earthquake. Geochem Geophys Geosyst 19(7):2109\u20132120. https:\/\/doi.org\/10.1029\/2018GC007489","journal-title":"Geochem Geophys Geosyst"},{"key":"10764_CR31","doi-asserted-by":"publisher","DOI":"10.5194\/gmd-2021-405","author":"S Choi","year":"2021","unstructured":"Choi S, Kim Y (2021) Rad-cgan v.10: Radar-based precipitation nowcasting model with conditional generative adversarial networks for multiple domains. Geosci Model Dev Discuss. https:\/\/doi.org\/10.5194\/gmd-2021-405","journal-title":"Geosci Model Dev Discuss"},{"key":"10764_CR32","unstructured":"Chowdhury SM, Zhu K, Zhang YS (2021) Mitigating greenhouse gas emissions through generative adversarial networks based wildfire prediction. arXiv preprint abs\/2108.08952:1\u20136. arXiv:2108.08952"},{"issue":"4","key":"10764_CR33","doi-asserted-by":"publisher","first-page":"373","DOI":"10.1007\/s10346-012-0339-3","volume":"10","author":"L Comegna","year":"2013","unstructured":"Comegna L, Picarelli L, Bucchignani E et al (2013) Potential effects of incoming climate changes on the behaviour of slow active landslides in clay. Landslides 10(4):373\u2013391. https:\/\/doi.org\/10.1007\/s10346-012-0339-3","journal-title":"Landslides"},{"key":"10764_CR34","unstructured":"Cosne G, Juraver A, Teng M, et\u00a0al (2020) Using simulated data to generate images of climate change. arXiv preprint abs\/2001.09531:1\u20139. arXiv:2001.09531"},{"key":"10764_CR35","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1016\/j.earscirev.2020.103184","volume":"205","author":"G Cremen","year":"2020","unstructured":"Cremen G, Galasso C (2020) Earthquake early warning: recent advances and perspectives. Earth Sci Rev 205:1\u201315. https:\/\/doi.org\/10.1016\/j.earscirev.2020.103184","journal-title":"Earth Sci Rev"},{"issue":"3","key":"10764_CR36","doi-asserted-by":"publisher","first-page":"216","DOI":"10.1016\/j.geosus.2021.09.001","volume":"2","author":"P Cui","year":"2021","unstructured":"Cui P, Peng J, Shi P et al (2021) Scientific challenges of research on natural hazards and disaster risk. Geogr Sustain 2(3):216\u2013223. https:\/\/doi.org\/10.1016\/j.geosus.2021.09.001","journal-title":"Geogr Sustain"},{"issue":"1","key":"10764_CR37","doi-asserted-by":"publisher","first-page":"45","DOI":"10.1002\/wcc.81","volume":"2","author":"A Dai","year":"2011","unstructured":"Dai A (2011) Drought under global warming: a review. Wiley Interdiscip Rev Clim Change 2(1):45\u201365. https:\/\/doi.org\/10.1002\/wcc.81","journal-title":"Wiley Interdiscip Rev Clim Change"},{"issue":"1","key":"10764_CR38","doi-asserted-by":"publisher","first-page":"65","DOI":"10.1016\/S0013-7952(01)00093-X","volume":"64","author":"F Dai","year":"2002","unstructured":"Dai F, Lee C, Ngai Y (2002) Landslide risk assessment and management: an overview. Eng Geol 64(1):65\u201387. https:\/\/doi.org\/10.1016\/S0013-7952(01)00093-X","journal-title":"Eng Geol"},{"key":"10764_CR39","doi-asserted-by":"publisher","DOI":"10.1029\/2007JB005209","author":"J Dawson","year":"2007","unstructured":"Dawson J, Tregoning P (2007) Uncertainty analysis of earthquake source parameters determined from INSAR: a simulation study. J Geophys Res Solid. https:\/\/doi.org\/10.1029\/2007JB005209","journal-title":"J Geophys Res Solid"},{"issue":"2","key":"10764_CR40","doi-asserted-by":"publisher","first-page":"173","DOI":"10.1109\/LGRS.2018.2870880","volume":"16","author":"J Dong","year":"2019","unstructured":"Dong J, Yin R, Sun X et al (2019) Inpainting of remote sensing SST images with deep convolutional generative adversarial network. IEEE Geosci Remote Sens Lett 16(2):173\u2013177. https:\/\/doi.org\/10.1109\/LGRS.2018.2870880","journal-title":"IEEE Geosci Remote Sens Lett"},{"issue":"12","key":"10764_CR41","doi-asserted-by":"publisher","first-page":"10544","DOI":"10.1109\/TGRS.2020.3036065","volume":"59","author":"X Dong","year":"2021","unstructured":"Dong X, Li Y (2021) Denoising the optical fiber seismic data by using convolutional adversarial network based on loss balance. IEEE Trans Geosci Remote Sens 59(12):10544\u201310554. https:\/\/doi.org\/10.1109\/TGRS.2020.3036065","journal-title":"IEEE Trans Geosci Remote Sens"},{"issue":"4","key":"10764_CR42","doi-asserted-by":"publisher","first-page":"1289","DOI":"10.1109\/TIT.2006.871582","volume":"52","author":"D Donoho","year":"2006","unstructured":"Donoho D (2006) Compressed sensing. IEEE Trans Inf Theory 52(4):1289\u20131306. https:\/\/doi.org\/10.1109\/TIT.2006.871582","journal-title":"IEEE Trans Inf Theory"},{"key":"10764_CR43","doi-asserted-by":"publisher","first-page":"661","DOI":"10.1002\/eqe.2365","volume":"43","author":"W Du","year":"2013","unstructured":"Du W, Wang G (2013) Fully probabilistic seismic displacement analysis of spatially distributed slopes using spatially correlated vector intensity measures. Earthq Eng Struct Dyn 43:661\u2013679. https:\/\/doi.org\/10.1002\/eqe.2365","journal-title":"Earthq Eng Struct Dyn"},{"key":"10764_CR44","doi-asserted-by":"publisher","DOI":"10.1016\/j.soildyn.2024.108619","volume":"180","author":"S Duan","year":"2024","unstructured":"Duan S, Song Z, Shen J et al (2024) Prediction for underground seismic intensity measures using conditional generative adversarial networks. Soil Dyn Earthq Eng 180:108619. https:\/\/doi.org\/10.1016\/j.soildyn.2024.108619","journal-title":"Soil Dyn Earthq Eng"},{"issue":"1\u20132","key":"10764_CR45","doi-asserted-by":"publisher","first-page":"1007","DOI":"10.1007\/s00382-019-05044-0","volume":"54","author":"J Dullaart","year":"2020","unstructured":"Dullaart J, Muis S, Bloemendaal N et al (2020) Advancing global storm surge modelling using the new era5 climate reanalysis. Climate Dyn 54(1\u20132):1007\u20131021. https:\/\/doi.org\/10.1007\/s00382-019-05044-0","journal-title":"Climate Dyn"},{"issue":"1\u20132","key":"10764_CR46","doi-asserted-by":"publisher","first-page":"99","DOI":"10.1016\/j.enggeo.2004.08.005","volume":"77","author":"T Duman","year":"2005","unstructured":"Duman T, \u00c7an T, Emre O et al (2005) Landslide inventory of northwestern Anatolia, Turkey. Eng Geol 77(1\u20132):99\u2013114. https:\/\/doi.org\/10.1016\/j.enggeo.2004.08.005","journal-title":"Eng Geol"},{"key":"10764_CR47","doi-asserted-by":"publisher","DOI":"10.1016\/j.cageo.2023.105377","volume":"177","author":"R Durall","year":"2023","unstructured":"Durall R, Ghanim A, Fernandez MR et al (2023) Deep diffusion models for seismic processing. Comput Geosci 177:105377. https:\/\/doi.org\/10.1016\/j.cageo.2023.105377","journal-title":"Comput Geosci"},{"key":"10764_CR48","unstructured":"Dutta P, Power B, Halpert AD, et\u00a0al (2019) 3d conditional generative adversarial networks to enable large-scale seismic image enhancement. arXiv preprint abs\/1911.06932:1\u20138. arXiv:1911.06932"},{"key":"10764_CR49","unstructured":"Ebert-Uphoff I, Lagerquist R, Hilburn K, et\u00a0al (2021) Cira guide to custom loss functions for neural networks in environmental sciences - version 1. ArXiv abs\/2106.09757:1\u201337. arXiv:2106.09757"},{"key":"10764_CR50","unstructured":"Eigenschink P, Vamosi S, Vamosi R, et\u00a0al (2021) Deep generative models for synthetic data. ACM Comput Surv pp 1\u201327"},{"issue":"9","key":"10764_CR51","doi-asserted-by":"publisher","first-page":"2379","DOI":"10.5194\/nhess-20-2379-2020","volume":"20","author":"G Esposito","year":"2020","unstructured":"Esposito G, Marchesini I, Mondini AC et al (2020) A spaceborne SAR-based procedure to support the detection of landslides. Nat Hazards Earth Syst Sci 20(9):2379\u20132395. https:\/\/doi.org\/10.5194\/nhess-20-2379-2020","journal-title":"Nat Hazards Earth Syst Sci"},{"key":"10764_CR52","doi-asserted-by":"publisher","first-page":"35","DOI":"10.5194\/essd-11-35-2019","volume":"11","author":"X Fan","year":"2019","unstructured":"Fan X, Scaringi G, Dom\u00e8nech G et al (2019) Two multi-temporal datasets that track the enhanced landsliding after the 2008 Wenchuan earthquake. Earth Syst Sci Data 11:35\u201355. https:\/\/doi.org\/10.5194\/essd-11-35-2019","journal-title":"Earth Syst Sci Data"},{"issue":"3","key":"10764_CR53","doi-asserted-by":"publisher","first-page":"391","DOI":"10.1109\/LGRS.2020.2979693","volume":"18","author":"B Fang","year":"2021","unstructured":"Fang B, Chen G, Pan L et al (2021) Gan-based siamese framework for landslide inventory mapping using bi-temporal optical remote sensing images. IEEE Geosci Remote Sens Lett 18(3):391\u2013395. https:\/\/doi.org\/10.1109\/LGRS.2020.2979693","journal-title":"IEEE Geosci Remote Sens Lett"},{"issue":"8","key":"10764_CR54","doi-asserted-by":"publisher","first-page":"1460","DOI":"10.1109\/LGRS.2019.2945680","volume":"17","author":"R Ferreira","year":"2020","unstructured":"Ferreira R, Noce J, Oliveira D et al (2020) Generating sketch-based synthetic seismic images with generative adversarial networks. IEEE Geosci Remote Sens Lett 17(8):1460\u20131464. https:\/\/doi.org\/10.1109\/LGRS.2019.2945680","journal-title":"IEEE Geosci Remote Sens Lett"},{"issue":"7096","key":"10764_CR55","doi-asserted-by":"publisher","first-page":"968","DOI":"10.1038\/nature04797","volume":"441","author":"Y Fialko","year":"2006","unstructured":"Fialko Y (2006) Interseismic strain accumulation and the earthquake potential on the southern SAN Andreas fault system. Nature 441(7096):968\u2013971. https:\/\/doi.org\/10.1038\/nature04797","journal-title":"Nature"},{"key":"10764_CR56","doi-asserted-by":"publisher","first-page":"38","DOI":"10.1016\/j.jvolgeores.2018.10.002","volume":"365","author":"M Furtney","year":"2018","unstructured":"Furtney M, Pritchard M, Biggs J et al (2018) Synthesizing multi-sensor, multi-satellite, multi-decadal datasets for global volcano monitoring. J Volcanol Geotherm Res 365:38\u201356. https:\/\/doi.org\/10.1016\/j.jvolgeores.2018.10.002","journal-title":"J Volcanol Geotherm Res"},{"issue":"3","key":"10764_CR57","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1029\/2019MS001896","volume":"12","author":"D Gagne","year":"2020","unstructured":"Gagne D, Christensen H, Subramanian A et al (2020) Machine learning for stochastic parameterization: generative adversarial networks in the Lorenz \u201996 model. J Adv Model Earth Syst 12(3):1\u201320. https:\/\/doi.org\/10.1029\/2019MS001896","journal-title":"J Adv Model Earth Syst"},{"key":"10764_CR58","doi-asserted-by":"publisher","DOI":"10.1029\/2022jb024122","author":"H Gan","year":"2022","unstructured":"Gan H, Pan X, Tang K et al (2022) EWR-NET: earthquake waveform regularization network for irregular station data based on deep generative model and resnet. J Geophys Res Solid Earth. https:\/\/doi.org\/10.1029\/2022jb024122","journal-title":"J Geophys Res Solid Earth"},{"key":"10764_CR59","doi-asserted-by":"publisher","DOI":"10.1016\/j.jcp.2022.111270","volume":"463","author":"Y Gao","year":"2022","unstructured":"Gao Y, Ng MK (2022) Wasserstein generative adversarial uncertainty quantification in physics-informed neural networks. J Comput Phys 463:111270. https:\/\/doi.org\/10.1016\/j.jcp.2022.111270","journal-title":"J Comput Phys"},{"issue":"8","key":"10764_CR60","doi-asserted-by":"publisher","first-page":"1662","DOI":"10.1016\/j.rse.2010.02.017","volume":"114","author":"Y Gao","year":"2010","unstructured":"Gao Y, Xie H, Yao T et al (2010) Integrated assessment on multi-temporal and multi-sensor combinations for reducing cloud obscuration of modis snow cover products of the pacific northwest USA. Remote Sens Environ 114(8):1662\u20131675. https:\/\/doi.org\/10.1016\/j.rse.2010.02.017","journal-title":"Remote Sens Environ"},{"key":"10764_CR61","unstructured":"Gao Z, Shi X, Han B, et\u00a0al (2023) Prediff: Precipitation nowcasting with latent diffusion models. In: Thirty-seventh Conference on Neural Information Processing Systems"},{"key":"10764_CR62","doi-asserted-by":"publisher","DOI":"10.1016\/j.cma.2020.113421","volume":"372","author":"F Gatti","year":"2020","unstructured":"Gatti F, Clouteau D (2020) Towards blending physics-based numerical simulations and seismic databases using generative adversarial network. Computer Methods Appl Mech Eng 372:113421. https:\/\/doi.org\/10.1016\/j.cma.2020.113421","journal-title":"Computer Methods Appl Mech Eng"},{"key":"10764_CR63","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1016\/j.cma.2020.113421","volume":"372","author":"F Gatti","year":"2020","unstructured":"Gatti F, Clouteau D (2020) Towards blending physics-based numerical simulations and seismic databases using generative adversarial network. Comput Methods Appl Mech Eng 372:1\u201327. https:\/\/doi.org\/10.1016\/j.cma.2020.113421","journal-title":"Comput Methods Appl Mech Eng"},{"key":"10764_CR64","doi-asserted-by":"publisher","first-page":"1214","DOI":"10.3390\/rs14051214","volume":"14","author":"X Ge","year":"2022","unstructured":"Ge X, Yang Y, Chen J et al (2022) Disaster prediction knowledge graph based on multi-source spatio-temporal information. Remote Sens 14:1214. https:\/\/doi.org\/10.3390\/rs14051214","journal-title":"Remote Sens"},{"key":"10764_CR65","unstructured":"G\u00f3mez-Gonzalez C, Serradell\u00a0Maronda K (2021) Super-resolution for downscaling climate data. Barcelona Supercomputing Center pp 1\u20132"},{"key":"10764_CR66","doi-asserted-by":"publisher","unstructured":"Gonz\u00e1lez-Abad J, Ba\u00f1o-Medina J, Heredia I (2021) On the use of deep generative models for \"perfect\" prognosis climate downscaling. In: NeurIPS 2021 Workshop on Tackling Climate Change with Machine Learning, pp 1\u20134, https:\/\/doi.org\/10.20350\/DIGITALCSIC\/14013","DOI":"10.20350\/DIGITALCSIC\/14013"},{"issue":"1","key":"10764_CR67","first-page":"5","volume":"1","author":"M Goodchild","year":"1997","unstructured":"Goodchild M, Proctor J (1997) Scale in a digital geographic world. Geogr Environ Modell 1(1):5\u201323","journal-title":"Geogr Environ Modell"},{"issue":"3","key":"10764_CR68","doi-asserted-by":"publisher","first-page":"157","DOI":"10.1190\/GEO2012-0451.1","volume":"78","author":"S Gray","year":"2013","unstructured":"Gray S (2013) Spatial sampling, migration aliasing, and migrated amplitudes. Geophysics 78(3):157\u2013164. https:\/\/doi.org\/10.1190\/GEO2012-0451.1","journal-title":"Geophysics"},{"issue":"4","key":"10764_CR69","doi-asserted-by":"publisher","first-page":"1158","DOI":"10.1002\/2017RG000579","volume":"55","author":"A Grezio","year":"2017","unstructured":"Grezio A, Babeyko A, Baptista M et al (2017) Probabilistic tsunami hazard analysis: multiple sources and global applications. Rev Geophys 55(4):1158\u20131198. https:\/\/doi.org\/10.1002\/2017RG000579","journal-title":"Rev Geophys"},{"key":"10764_CR70","doi-asserted-by":"publisher","first-page":"7111","DOI":"10.1109\/JSTARS.2021.3095270","volume":"14","author":"F Grijalva","year":"2021","unstructured":"Grijalva F, Ramos W, Perez N et al (2021) Eseismic-gan: a generative model for seismic events from cotopaxi volcano. IEEE J Sel Top Appl Earth Obs Remote Sens 14:7111\u20137120. https:\/\/doi.org\/10.1109\/JSTARS.2021.3095270","journal-title":"IEEE J Sel Top Appl Earth Obs Remote Sens"},{"key":"10764_CR71","doi-asserted-by":"publisher","unstructured":"Groenke B, Madaus L, Monteleoni C (2020) Climalign: Unsupervised statistical downscaling of climate variables via normalizing flows. pp 60\u201366, https:\/\/doi.org\/10.1145\/3429309.3429318","DOI":"10.1145\/3429309.3429318"},{"key":"10764_CR72","doi-asserted-by":"publisher","unstructured":"Grohnfeldt C, Schmitt M, Zhu X (2018) A conditional generative adversarial network to fuse SAR and multispectral optical data for cloud removal from sentinel-2 images. pp 1726\u20131729, https:\/\/doi.org\/10.1109\/IGARSS.2018.8519215","DOI":"10.1109\/IGARSS.2018.8519215"},{"key":"10764_CR73","doi-asserted-by":"publisher","first-page":"231","DOI":"10.1016\/j.epsl.2018.09.002","volume":"502","author":"F Gross","year":"2018","unstructured":"Gross F, Mountjoy J, Crutchley G et al (2018) Free gas distribution and basal shear zone development in a subaqueous landslide insight from 3d seismic imaging of the Tuaheni landslide complex, New Zealand. Earth Planet Sci Lett 502:231\u2013243. https:\/\/doi.org\/10.1016\/j.epsl.2018.09.002","journal-title":"Earth Planet Sci Lett"},{"key":"10764_CR74","unstructured":"Gupta R, Mustafa M, Kashinath K (2020) Climate-stylegan: Modeling turbulent climate dynamics using style-gan. In: NeurIPS AI for Earth Sciences Workshop, pp 1\u20135"},{"issue":"4","key":"10764_CR75","doi-asserted-by":"publisher","first-page":"531","DOI":"10.2113\/gseegeosci.ii.4.531","volume":"2","author":"F Guzzetti","year":"1996","unstructured":"Guzzetti F, Cardinali M, Reichenbach P (1996) The influence of structural setting and lithology on landslide type and pattern. Environ Eng Geosci 2(4):531\u2013555. https:\/\/doi.org\/10.2113\/gseegeosci.ii.4.531","journal-title":"Environ Eng Geosci"},{"issue":"1\u20134","key":"10764_CR76","doi-asserted-by":"publisher","first-page":"272","DOI":"10.1016\/j.geomorph.2005.06.002","volume":"72","author":"F Guzzetti","year":"2005","unstructured":"Guzzetti F, Reichenbach P, Cardinali M et al (2005) Probabilistic landslide hazard assessment at the basin scale. Geomorphology 72(1\u20134):272\u2013299. https:\/\/doi.org\/10.1016\/j.geomorph.2005.06.002","journal-title":"Geomorphology"},{"issue":"1\u20132","key":"10764_CR77","doi-asserted-by":"publisher","first-page":"105","DOI":"10.1016\/j.geomorph.2007.07.015","volume":"96","author":"F Guzzetti","year":"2008","unstructured":"Guzzetti F, Ardizzone F, Cardinali M et al (2008) Distribution of landslides in the upper Tiber river basin, central Italy. Geomorphology 96(1\u20132):105\u2013122. https:\/\/doi.org\/10.1016\/j.geomorph.2007.07.015","journal-title":"Geomorphology"},{"issue":"1\u20132","key":"10764_CR78","doi-asserted-by":"publisher","first-page":"42","DOI":"10.1016\/j.earscirev.2012.02.001","volume":"112","author":"F Guzzetti","year":"2012","unstructured":"Guzzetti F, Mondini A, Cardinali M et al (2012) Landslide inventory maps: new tools for an old problem. Earth Sci Rev 112(1\u20132):42\u201366. https:\/\/doi.org\/10.1016\/j.earscirev.2012.02.001","journal-title":"Earth Sci Rev"},{"key":"10764_CR79","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1016\/j.earscirev.2019.102973","volume":"200","author":"F Guzzetti","year":"2020","unstructured":"Guzzetti F, Gariano S, Peruccacci S et al (2020) Geographical landslide early warning systems. Earth Sci Rev 200:1\u201329. https:\/\/doi.org\/10.1016\/j.earscirev.2019.102973","journal-title":"Earth Sci Rev"},{"issue":"1\u20132","key":"10764_CR80","doi-asserted-by":"publisher","first-page":"121","DOI":"10.1007\/s00382-012-1652-1","volume":"42","author":"I Haigh","year":"2014","unstructured":"Haigh I, Wijeratne E, MacPherson L et al (2014) Estimating present day extreme water level exceedance probabilities around the coastline of Australia: tides, extra-tropical storm surges and mean sea level. Climate Dyn 42(1\u20132):121\u2013138. https:\/\/doi.org\/10.1007\/s00382-012-1652-1","journal-title":"Climate Dyn"},{"key":"10764_CR81","doi-asserted-by":"publisher","unstructured":"Halpert A (2019) Deep learning-enabled seismic image enhancement. pp 2081\u20132085, https:\/\/doi.org\/10.1190\/segam2018-2996943.1","DOI":"10.1190\/segam2018-2996943.1"},{"issue":"1","key":"10764_CR82","doi-asserted-by":"publisher","first-page":"108","DOI":"10.1002\/2016RG000549","volume":"56","author":"Z Hao","year":"2018","unstructured":"Hao Z, Singh V, Xia Y (2018) Seasonal drought prediction: advances, challenges, and future prospects. Rev Geophys 56(1):108\u2013141. https:\/\/doi.org\/10.1002\/2016RG000549","journal-title":"Rev Geophys"},{"key":"10764_CR83","doi-asserted-by":"publisher","DOI":"10.1029\/2022ms003120","author":"L Harris","year":"2022","unstructured":"Harris L, McRae ATT, Chantry M et al (2022) A generative deep learning approach to stochastic downscaling of precipitation forecasts. J Adv Model Earth Syst. https:\/\/doi.org\/10.1029\/2022ms003120","journal-title":"J Adv Model Earth Syst"},{"issue":"12","key":"10764_CR84","doi-asserted-by":"publisher","first-page":"2341","DOI":"10.1109\/TPAMI.2010.168","volume":"33","author":"K He","year":"2011","unstructured":"He K, Sun J, Tang X (2011) Single image haze removal using dark channel prior. IEEE Trans Pattern Anal Mach Intell 33(12):2341\u20132353. https:\/\/doi.org\/10.1109\/TPAMI.2010.168","journal-title":"IEEE Trans Pattern Anal Mach Intell"},{"key":"10764_CR85","doi-asserted-by":"publisher","unstructured":"He W, Jiang Z, Kriby M, et\u00a0al (2022a) Quantifying and reducing registration uncertainty of spatial vector labels on earth imagery. Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. https:\/\/doi.org\/10.1145\/3534678.3539410","DOI":"10.1145\/3534678.3539410"},{"key":"10764_CR86","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1145\/3481043","volume":"13","author":"W He","year":"2022","unstructured":"He W, Sainju AM, Jiang Z et al (2022) Earth imagery segmentation on terrain surface with limited training labels: a semi-supervised approach based on physics-guided graph co-training. ACM Trans Intell Syst Technol 13:1\u201322. https:\/\/doi.org\/10.1145\/3481043","journal-title":"ACM Trans Intell Syst Technol"},{"issue":"10","key":"10764_CR87","doi-asserted-by":"publisher","first-page":"1132","DOI":"10.1038\/s41592-021-01256-7","volume":"18","author":"B Heil","year":"2021","unstructured":"Heil B, Hoffman M, Markowetz F et al (2021) Reproducibility standards for machine learning in the life sciences. Nat Methods 18(10):1132\u20131135. https:\/\/doi.org\/10.1038\/s41592-021-01256-7","journal-title":"Nat Methods"},{"key":"10764_CR88","unstructured":"Henriques LFM, Colcher S, Milidi\u2019u RL, et\u00a0al (2021) Generating data augmentation samples for semantic segmentation of salt bodies in a synthetic seismic image dataset. ArXiv abs\/2106.08269:1\u201315. arXiv:2106.08269"},{"issue":"3\u20134","key":"10764_CR89","doi-asserted-by":"publisher","first-page":"220","DOI":"10.1016\/j.enggeo.2009.02.009","volume":"105","author":"G Herrera","year":"2009","unstructured":"Herrera G, Fern\u00e1ndez-Merodo J, Mulas J et al (2009) A landslide forecasting model using ground based SAR data: the Portalet case study. Eng Geol 105(3\u20134):220\u2013230. https:\/\/doi.org\/10.1016\/j.enggeo.2009.02.009","journal-title":"Eng Geol"},{"key":"10764_CR90","doi-asserted-by":"publisher","first-page":"828","DOI":"10.1038\/s42256-022-00540-1","volume":"4","author":"P Hess","year":"2022","unstructured":"Hess P, Dr\u00fcke M, Petri S et al (2022) Physically constrained generative adversarial networks for improving precipitation fields from earth system models. Nat Mach Intell 4:828\u2013839. https:\/\/doi.org\/10.1038\/s42256-022-00540-1","journal-title":"Nat Mach Intell"},{"issue":"9","key":"10764_CR91","doi-asserted-by":"publisher","first-page":"816","DOI":"10.1038\/nclimate1911","volume":"3","author":"Y Hirabayashi","year":"2013","unstructured":"Hirabayashi Y, Mahendran R, Koirala S et al (2013) Global flood risk under climate change. Nat Climate Change 3(9):816\u2013821. https:\/\/doi.org\/10.1038\/nclimate1911","journal-title":"Nat Climate Change"},{"key":"10764_CR92","unstructured":"Ho J, Jain A, Abbeel P (2020) Denoising diffusion probabilistic models. https:\/\/proceedings.neurips.cc\/paper\/2020\/file\/4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf"},{"key":"10764_CR93","doi-asserted-by":"publisher","first-page":"1","DOI":"10.3390\/rs14010024","volume":"14","author":"Y Hu","year":"2022","unstructured":"Hu Y, Chen L, Wang Z et al (2022) Towards a more realistic and detailed deep-learning-based radar echo extrapolation method. Remote Sens 14:1\u201324. https:\/\/doi.org\/10.3390\/rs14010024","journal-title":"Remote Sens"},{"issue":"2","key":"10764_CR94","doi-asserted-by":"publisher","first-page":"333","DOI":"10.1029\/2018RG000598","volume":"56","author":"C Huang","year":"2018","unstructured":"Huang C, Chen Y, Zhang S et al (2018) Detecting, extracting, and monitoring surface water from space using optical sensors: a review. Rev Geophys 56(2):333\u2013360. https:\/\/doi.org\/10.1029\/2018RG000598","journal-title":"Rev Geophys"},{"key":"10764_CR95","doi-asserted-by":"publisher","DOI":"10.1016\/j.catena.2021.105250","volume":"202","author":"F Huang","year":"2021","unstructured":"Huang F, Ye Z, Jiang SH et al (2021) Uncertainty study of landslide susceptibility prediction considering the different attribute interval numbers of environmental factors and different data-based models. CATENA 202:105250. https:\/\/doi.org\/10.1016\/j.catena.2021.105250","journal-title":"CATENA"},{"key":"10764_CR96","doi-asserted-by":"publisher","DOI":"10.1016\/j.knosys.2023.110919","volume":"279","author":"L Huang","year":"2023","unstructured":"Huang L, Huang J, Li H et al (2023) Robust spatial temporal imputation based on spatio-temporal generative adversarial nets. Knowl Based Syst 279:110919. https:\/\/doi.org\/10.1016\/j.knosys.2023.110919","journal-title":"Knowl Based Syst"},{"key":"10764_CR97","doi-asserted-by":"publisher","unstructured":"Huang T, David C, Oadia C, et\u00a0al (2022) An earth system digital twin for flood prediction and analysis. In: IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium, 9, pp 4735\u20134738, https:\/\/doi.org\/10.1109\/IGARSS46834.2022.9884830","DOI":"10.1109\/IGARSS46834.2022.9884830"},{"key":"10764_CR98","doi-asserted-by":"publisher","first-page":"251","DOI":"10.1007\/s10687-022-00459-1","volume":"26","author":"T Ivek","year":"2023","unstructured":"Ivek T, Vlah D (2023) Reconstruction of incomplete wildfire data using deep generative models. Extremes 26:251\u2013271. https:\/\/doi.org\/10.1007\/s10687-022-00459-1","journal-title":"Extremes"},{"key":"10764_CR99","doi-asserted-by":"publisher","first-page":"117","DOI":"10.1016\/j.earscirev.2017.08.010","volume":"176","author":"J Jaffr\u00e9s","year":"2018","unstructured":"Jaffr\u00e9s J, Cuff C, Rasmussen C et al (2018) Teleconnection of atmospheric and oceanic climate anomalies with Australian weather patterns: a review of data availability. Earth Sci Rev 176:117\u2013146. https:\/\/doi.org\/10.1016\/j.earscirev.2017.08.010","journal-title":"Earth Sci Rev"},{"key":"10764_CR100","doi-asserted-by":"publisher","DOI":"10.1016\/j.jhydrol.2023.130498","volume":"629","author":"MS Jahangir","year":"2024","unstructured":"Jahangir MS, Quilty J (2024) Generative deep learning for probabilistic streamflow forecasting: conditional variational auto-encoder. J Hydrol 629:130498. https:\/\/doi.org\/10.1016\/j.jhydrol.2023.130498","journal-title":"J Hydrol"},{"key":"10764_CR101","unstructured":"Jiang J, Zheng L, Luo F, et\u00a0al (2018) Rednet: Residual encoder-decoder network for indoor rgb-d semantic segmentation. arXiv preprint abs\/1806.01054:1\u201314. arXiv:1806.01054"},{"issue":"8","key":"10764_CR102","doi-asserted-by":"publisher","first-page":"679","DOI":"10.1038\/s41578-020-00260-1","volume":"6","author":"J Jiang","year":"2021","unstructured":"Jiang J, Chen M, Fan J (2021) Deep neural networks for the evaluation and design of photonic devices. Nat Rev Mater 6(8):679\u2013700. https:\/\/doi.org\/10.1038\/s41578-020-00260-1","journal-title":"Nat Rev Mater"},{"key":"10764_CR103","doi-asserted-by":"publisher","DOI":"10.1016\/j.cageo.2023.105420","volume":"179","author":"X Jiang","year":"2023","unstructured":"Jiang X, Wang X, Liu Y et al (2023) Spatial extrapolation of downscaled geochemical data using conditional GAN. Comput Geosci 179:105420. https:\/\/doi.org\/10.1016\/j.cageo.2023.105420","journal-title":"Comput Geosci"},{"issue":"1","key":"10764_CR104","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1038\/s41467-018-04860-y","volume":"9","author":"P Jousset","year":"2018","unstructured":"Jousset P, Reinsch T, Ryberg T et al (2018) Dynamic strain determination using fibre-optic cables allows imaging of seismological and structural features. Nat Commun 9(1):1\u20137. https:\/\/doi.org\/10.1038\/s41467-018-04860-y","journal-title":"Nat Commun"},{"issue":"2","key":"10764_CR105","doi-asserted-by":"publisher","first-page":"307","DOI":"10.1111\/1365-2478.13055","volume":"69","author":"H Kaur","year":"2021","unstructured":"Kaur H, Pham N, Fomel S (2021) Seismic data interpolation using deep learning with generative adversarial networks. Geophys Prospect 69(2):307\u2013326. https:\/\/doi.org\/10.1111\/1365-2478.13055","journal-title":"Geophys Prospect"},{"key":"10764_CR106","volume-title":"An introduction to geophysical exploration","author":"P Kearey","year":"1991","unstructured":"Kearey P, Brooks M (1991) An introduction to geophysical exploration, 2nd edn. Blackwell Publications, Oxford","edition":"2"},{"key":"10764_CR107","doi-asserted-by":"publisher","DOI":"10.1016\/j.jag.2023.103312","volume":"119","author":"J Kim","year":"2023","unstructured":"Kim J, Kim T, Ryu JG (2023) Multi-source deep data fusion and super-resolution for downscaling sea surface temperature guided by generative adversarial network-based spatiotemporal dependency learning. Int J Appl Earth Observ Geoinf 119:103312. https:\/\/doi.org\/10.1016\/j.jag.2023.103312","journal-title":"Int J Appl Earth Observ Geoinf"},{"key":"10764_CR108","doi-asserted-by":"publisher","first-page":"4532","DOI":"10.1109\/JSTARS.2020.3013598","volume":"13","author":"JH Kim","year":"2020","unstructured":"Kim JH, Ryu S, Jeong J et al (2020) Impact of satellite sounding data on virtual visible imagery generation using conditional generative adversarial network. IEEE J Sel Top Appl Earth Obs Remote Sens 13:4532\u20134541. https:\/\/doi.org\/10.1109\/JSTARS.2020.3013598","journal-title":"IEEE J Sel Top Appl Earth Obs Remote Sens"},{"key":"10764_CR109","unstructured":"Kim S, Hong S, Joh M, et\u00a0al (2017) Deeprain: Convlstm network for precipitation prediction using multichannel radar data. arXiv preprint abs\/1711.02316:1\u20134. arXiv:1711.02316"},{"key":"10764_CR110","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1109\/TGRS.2021.3108812","volume":"60","author":"Y Kim","year":"2022","unstructured":"Kim Y, Hong S (2022) Very short-term rainfall prediction using ground radar observations and conditional generative adversarial networks. IEEE Trans Geosci Remote Sens 60:1\u20138. https:\/\/doi.org\/10.1109\/TGRS.2021.3108812","journal-title":"IEEE Trans Geosci Remote Sens"},{"key":"10764_CR111","unstructured":"Klemmer K, Saha S, Kahl M, et\u00a0al (2021) Generative modeling of spatio-temporal weather patterns with extreme event conditioning. ArXiv abs\/2104.12469:1\u20136. arXiv:2104.12469"},{"issue":"3","key":"10764_CR112","doi-asserted-by":"publisher","first-page":"196","DOI":"10.1038\/s41558-019-0404-1","volume":"9","author":"B Kn\u00fcsel","year":"2019","unstructured":"Kn\u00fcsel B, Zumwald M, Baumberger C et al (2019) Applying big data beyond small problems in climate research. Nature Climate Change 9(3):196\u2013202. https:\/\/doi.org\/10.1038\/s41558-019-0404-1","journal-title":"Nature Climate Change"},{"key":"10764_CR113","unstructured":"Krinitskiy M, Zyulyaeva YA, Gulev SK, et\u00a0al (2019) Clustering of polar vortex states using convolutional autoencoders. In: EGU General Assembly Conference Abstracts, pp 1\u20138"},{"issue":"21","key":"10764_CR114","doi-asserted-by":"publisher","first-page":"10855","DOI":"10.1002\/2017GL074469","volume":"44","author":"K Kuge","year":"2017","unstructured":"Kuge K (2017) Seismic observations indicating that the 2015 ogasawara (bonin) earthquake ruptured beneath the 660 km discontinuity. Geophys Res Lett 44(21):10855\u201310862. https:\/\/doi.org\/10.1002\/2017GL074469","journal-title":"Geophys Res Lett"},{"key":"10764_CR115","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1016\/j.earscirev.2021.103603","volume":"217","author":"P Kumar","year":"2021","unstructured":"Kumar P, Debele S, Sahani J et al (2021) An overview of monitoring methods for assessing the performance of nature-based solutions against natural hazards. Earth Sci Rev 217:1\u201326. https:\/\/doi.org\/10.1016\/j.earscirev.2021.103603","journal-title":"Earth Sci Rev"},{"key":"10764_CR116","doi-asserted-by":"publisher","DOI":"10.1016\/j.jhydrol.2023.129276","volume":"618","author":"CA do Lago","year":"2023","unstructured":"do Lago CA, Giacomoni MH, Bentivoglio R et al (2023) Generalizing rapid flood predictions to unseen urban catchments with conditional generative adversarial networks. J Hydrol 618:129276. https:\/\/doi.org\/10.1016\/j.jhydrol.2023.129276","journal-title":"J Hydrol"},{"issue":"9","key":"10764_CR117","doi-asserted-by":"publisher","first-page":"7211","DOI":"10.1109\/TGRS.2020.3032790","volume":"59","author":"J Leinonen","year":"2021","unstructured":"Leinonen J, Nerini D, Berne A (2021) Stochastic super-resolution for downscaling time-evolving atmospheric fields with a generative adversarial network. IEEE Trans Geosci Remote Sens 59(9):7211\u20137223. https:\/\/doi.org\/10.1109\/TGRS.2020.3032790","journal-title":"IEEE Trans Geosci Remote Sens"},{"issue":"9","key":"10764_CR118","doi-asserted-by":"publisher","first-page":"1478","DOI":"10.1109\/LGRS.2019.2950687","volume":"17","author":"H Li","year":"2020","unstructured":"Li H, Gao S, Liu G et al (2020) Visual prediction of typhoon clouds with hierarchical generative adversarial networks. IEEE Geosci Remote Sens Lett 17(9):1478\u20131482. https:\/\/doi.org\/10.1109\/LGRS.2019.2950687","journal-title":"IEEE Geosci Remote Sens Lett"},{"key":"10764_CR119","doi-asserted-by":"publisher","first-page":"47","DOI":"10.1016\/j.neucom.2022.01.029","volume":"479","author":"H Li","year":"2022","unstructured":"Li H, Yang Y, Chang M et al (2022) Srdiff: single image super-resolution with diffusion probabilistic models. Neurocomputing 479:47\u201359. https:\/\/doi.org\/10.1016\/j.neucom.2022.01.029","journal-title":"Neurocomputing"},{"key":"10764_CR120","doi-asserted-by":"publisher","first-page":"373","DOI":"10.1016\/j.isprsjprs.2020.06.021","volume":"166","author":"J Li","year":"2020","unstructured":"Li J, Wu Z, Hu Z et al (2020) Thin cloud removal in optical remote sensing images based on generative adversarial networks and physical model of cloud distortion. ISPRS J Photogramm Remote Sens 166:373\u2013389. https:\/\/doi.org\/10.1016\/j.isprsjprs.2020.06.021","journal-title":"ISPRS J Photogramm Remote Sens"},{"key":"10764_CR121","doi-asserted-by":"publisher","first-page":"24","DOI":"10.1016\/j.aiig.2020.12.002","volume":"1","author":"K Li","year":"2020","unstructured":"Li K, Chen S, Hu G (2020) Seismic labeled data expansion using variational autoencoders. Artif Intell Geosci 1:24\u201330. https:\/\/doi.org\/10.1016\/j.aiig.2020.12.002","journal-title":"Artif Intell Geosci"},{"issue":"1","key":"10764_CR122","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1029\/2019RG000667","volume":"58","author":"L Li","year":"2020","unstructured":"Li L, Tan J, Schwarz B et al (2020) Recent advances and challenges of waveform-based seismic location methods at multiple scales. Rev Geophys 58(1):1\u201347. https:\/\/doi.org\/10.1029\/2019RG000667","journal-title":"Rev Geophys"},{"key":"10764_CR123","doi-asserted-by":"publisher","DOI":"10.1126\/sciadv.adk4489","author":"L Li","year":"2024","unstructured":"Li L, Carver R, Lopez-Gomez I et al (2024) Generative emulation of weather forecast ensembles with diffusion models. Sci Adv. https:\/\/doi.org\/10.1126\/sciadv.adk4489","journal-title":"Sci Adv"},{"key":"10764_CR124","doi-asserted-by":"publisher","unstructured":"Li Q, Luo Y (2020) Using gan priors for ultrahigh resolution seismic inversion. pp 2453\u20132457, https:\/\/doi.org\/10.1190\/segam2019-3215520.1","DOI":"10.1190\/segam2019-3215520.1"},{"key":"10764_CR125","doi-asserted-by":"publisher","first-page":"672","DOI":"10.1016\/j.rse.2017.09.032","volume":"204","author":"S Li","year":"2018","unstructured":"Li S, Sun D, Goldberg MD et al (2018) Automatic near real-time flood detection using SUOMI-NPP\/VIIRS data. Remote Sens Environ 204:672\u2013689. https:\/\/doi.org\/10.1016\/j.rse.2017.09.032","journal-title":"Remote Sens Environ"},{"key":"10764_CR126","doi-asserted-by":"publisher","first-page":"319","DOI":"10.1038\/s43017-023-00409-w","volume":"4","author":"X Li","year":"2023","unstructured":"Li X, Feng M, Ran Y et al (2023) Big data in earth system science and progress towards a digital twin. Nat Rev Earth Environ 4:319\u2013332. https:\/\/doi.org\/10.1038\/s43017-023-00409-w","journal-title":"Nat Rev Earth Environ"},{"key":"10764_CR127","doi-asserted-by":"publisher","first-page":"178","DOI":"10.1016\/j.isprsjprs.2019.04.014","volume":"152","author":"Y Li","year":"2019","unstructured":"Li Y, Martinis S, Wieland M (2019) Urban flood mapping with an active self-learning convolutional neural network based on terrasar-x intensity and interferometric coherence. ISPRS J Photogramm Remote Sens 152:178\u2013191. https:\/\/doi.org\/10.1016\/j.isprsjprs.2019.04.014","journal-title":"ISPRS J Photogramm Remote Sens"},{"key":"10764_CR128","doi-asserted-by":"publisher","unstructured":"Li Y, Ku B, Kim G, et\u00a0al (2020e) Seismic signal synthesis by generative adversarial network with gated convolutional neural network structure. pp 3857\u20133860, https:\/\/doi.org\/10.1109\/IGARSS39084.2020.9323670","DOI":"10.1109\/IGARSS39084.2020.9323670"},{"key":"10764_CR129","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1109\/LGRS.2021.3073419","volume":"19","author":"Y Li","year":"2022","unstructured":"Li Y, Luo X, Wu N et al (2022) The application of semisupervised attentional generative adversarial networks in desert seismic data denoising. IEEE Geosci Remote Sens Lett 19:1\u20135. https:\/\/doi.org\/10.1109\/LGRS.2021.3073419","journal-title":"IEEE Geosci Remote Sens Lett"},{"issue":"10","key":"10764_CR130","doi-asserted-by":"publisher","first-page":"4773","DOI":"10.1029\/2018GL077870","volume":"45","author":"Z Li","year":"2018","unstructured":"Li Z, Meier MA, Hauksson E et al (2018) Machine learning seismic wave discrimination: application to earthquake early warning. Geophys Res Lett 45(10):4773\u20134779. https:\/\/doi.org\/10.1029\/2018GL077870","journal-title":"Geophys Res Lett"},{"key":"10764_CR131","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1029\/2021AV00039","volume":"2","author":"Z Li","year":"2021","unstructured":"Li Z, Shen Z, Yang Y et al (2021) Rapid response to the 2019 ridgecrest earthquake with distributed acoustic sensing. AGU Adv 2:1\u20139. https:\/\/doi.org\/10.1029\/2021AV00039","journal-title":"AGU Adv"},{"key":"10764_CR132","doi-asserted-by":"publisher","first-page":"53","DOI":"10.1016\/j.isprsjprs.2019.10.017","volume":"159","author":"J Liang","year":"2020","unstructured":"Liang J, Liu D (2020) A local thresholding approach to flood water delineation using sentinel-1 SAR imagery. ISPRS J Photogramm Remote Sens 159:53\u201362. https:\/\/doi.org\/10.1016\/j.isprsjprs.2019.10.017","journal-title":"ISPRS J Photogramm Remote Sens"},{"issue":"11","key":"10764_CR133","doi-asserted-by":"publisher","first-page":"2490","DOI":"10.1109\/36.964986","volume":"39","author":"S Liang","year":"2001","unstructured":"Liang S, Fang H, Chen M (2001) Atmospheric correction of landsat ETM+ land surface imagery-part I: methods. IEEE Trans Geosci Remote Sens 39(11):2490\u20132498. https:\/\/doi.org\/10.1109\/36.964986","journal-title":"IEEE Trans Geosci Remote Sens"},{"issue":"12","key":"10764_CR134","doi-asserted-by":"publisher","first-page":"5129","DOI":"10.1007\/s00024-021-02841-9","volume":"178","author":"C Liu","year":"2021","unstructured":"Liu C, Rim D, Baraldi R et al (2021) Comparison of machine learning approaches for tsunami forecasting from sparse observations. Pure Appl Geophys 178(12):5129\u20135153. https:\/\/doi.org\/10.1007\/s00024-021-02841-9","journal-title":"Pure Appl Geophys"},{"issue":"14","key":"10764_CR135","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1029\/2021GL093043","volume":"48","author":"F Liu","year":"2021","unstructured":"Liu F, Elliott J, Craig T et al (2021) Improving the resolving power of INSAR for earthquakes using time series: a case study in Iran. Geophys Res Lett 48(14):1\u201312. https:\/\/doi.org\/10.1029\/2021GL093043","journal-title":"Geophys Res Lett"},{"key":"10764_CR136","doi-asserted-by":"publisher","first-page":"34","DOI":"10.3390\/rs14194834","volume":"14","author":"J Liu","year":"2022","unstructured":"Liu J, Yuan Z, Pan Z et al (2022) Diffusion model with detail complement for super-resolution of remote sensing. Remote Sens 14:34\u201348. https:\/\/doi.org\/10.3390\/rs14194834","journal-title":"Remote Sens"},{"key":"10764_CR137","doi-asserted-by":"publisher","first-page":"357","DOI":"10.1038\/s41467-023-43860-5","volume":"15","author":"L Liu","year":"2024","unstructured":"Liu L, Zhou W, Guan K et al (2024) Knowledge-guided machine learning can improve carbon cycle quantification in agroecosystems. Nat Commun 15:357. https:\/\/doi.org\/10.1038\/s41467-023-43860-5","journal-title":"Nat Commun"},{"key":"10764_CR138","doi-asserted-by":"publisher","unstructured":"Liu M, Huang H, Feng H, et\u00a0al (2023) Pristi: A conditional diffusion framework for spatiotemporal imputation. IEEE 39th International Conference on Data Engineering (ICDE) pp 1927\u20131939. https:\/\/doi.org\/10.1109\/icde55515.2023.00150","DOI":"10.1109\/icde55515.2023.00150"},{"key":"10764_CR139","doi-asserted-by":"publisher","unstructured":"Liu R, Li Y, Jiao L (2020) Sar image specle reduction based on a generative adversarial network. pp 1\u20136, https:\/\/doi.org\/10.1109\/IJCNN48605.2020.9206847","DOI":"10.1109\/IJCNN48605.2020.9206847"},{"issue":"10","key":"10764_CR140","doi-asserted-by":"publisher","first-page":"1462","DOI":"10.1109\/LGRS.2016.2591939","volume":"13","author":"W Liu","year":"2016","unstructured":"Liu W, Cao S, Gan S et al (2016) One-step slope estimation for dealiased seismic data reconstruction via iterative Seislet thresholding. IEEE Geosci Remote Sens Lett 13(10):1462\u20131466. https:\/\/doi.org\/10.1109\/LGRS.2016.2591939","journal-title":"IEEE Geosci Remote Sens Lett"},{"key":"10764_CR141","doi-asserted-by":"publisher","first-page":"4153","DOI":"10.1007\/s10064-018-1388-1","volume":"78","author":"Y Liu","year":"2018","unstructured":"Liu Y, Chen Z, Hu B et al (2018) A non-uniform spatiotemporal kriging interpolation algorithm for landslide displacement data. Bull Eng Geol Environ 78:4153\u20134166. https:\/\/doi.org\/10.1007\/s10064-018-1388-1","journal-title":"Bull Eng Geol Environ"},{"key":"10764_CR142","doi-asserted-by":"publisher","DOI":"10.1016\/j.compgeo.2024.106085","volume":"167","author":"Y Liu","year":"2024","unstructured":"Liu Y, Long J, Li C et al (2024) Physics-informed data assimilation model for displacement prediction of hydrodynamic pressure-driven landslide. Comput Geotech 167:106085. https:\/\/doi.org\/10.1016\/j.compgeo.2024.106085","journal-title":"Comput Geotech"},{"key":"10764_CR143","doi-asserted-by":"publisher","DOI":"10.1017\/CBO9781316276273","volume-title":"Global volcanic hazards and risk","author":"S Loughlin","year":"2015","unstructured":"Loughlin S, Sparks S, Brown S et al (2015) Global volcanic hazards and risk. Cambridge University Press, Cambridge. https:\/\/doi.org\/10.1017\/CBO9781316276273"},{"issue":"8","key":"10764_CR144","doi-asserted-by":"publisher","first-page":"578","DOI":"10.1190\/tle37080578.1","volume":"37","author":"P Lu","year":"2018","unstructured":"Lu P, Morris M, Brazell S et al (2018) Using generative adversarial networks to improve deep-learning fault interpretation networks. Leading Edge 37(8):578\u2013583. https:\/\/doi.org\/10.1190\/tle37080578.1","journal-title":"Leading Edge"},{"issue":"1","key":"10764_CR145","doi-asserted-by":"publisher","first-page":"8","DOI":"10.1109\/MCG.2020.3025425","volume":"41","author":"A Luccioni","year":"2021","unstructured":"Luccioni A, Schmidt V, Vardanyan V et al (2021) Using artificial intelligence to visualize the impacts of climate change. IEEE Comput Graphics Appl 41(1):8\u201314. https:\/\/doi.org\/10.1109\/MCG.2020.3025425","journal-title":"IEEE Comput Graphics Appl"},{"key":"10764_CR146","doi-asserted-by":"crossref","unstructured":"Luo S, Hu W (2021) Diffusion probabilistic models for 3d point cloud generation. 2021 IEEE\/CVF Conference on Computer Vision and Pattern Recognition (CVPR) pp 2836\u20132844. https:\/\/api.semanticscholar.org\/CorpusID:232092778","DOI":"10.1109\/CVPR46437.2021.00286"},{"key":"10764_CR147","unstructured":"L\u00fctjens B, Leshchinskiy B, Requena-Mesa C, et\u00a0al (2020) Physics-informed gans for coastal flood visualization. arXiv preprint abs\/2010.08103:1\u201310. arXiv:2010.08103"},{"key":"10764_CR148","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1109\/LGRS.2022.3150778","volume":"19","author":"F Ma","year":"2022","unstructured":"Ma F, Xiang D, Yang K et al (2022) Weakly supervised deep soft clustering for flood identification in SAR images. IEEE Geosci Remote Sens Lett 19:1\u20135. https:\/\/doi.org\/10.1109\/LGRS.2022.3150778","journal-title":"IEEE Geosci Remote Sens Lett"},{"key":"10764_CR149","doi-asserted-by":"publisher","first-page":"1231","DOI":"10.1007\/s10346-021-01795-2","volume":"19","author":"G Ma","year":"2022","unstructured":"Ma G, Rezania M, Mousavi Nezhad M et al (2022) Uncertainty quantification of landslide runout motion considering soil interdependent anisotropy and fabric orientation. Landslides 19:1231\u20131247. https:\/\/doi.org\/10.1007\/s10346-021-01795-2","journal-title":"Landslides"},{"key":"10764_CR150","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1109\/LGRS.2021.3135034","volume":"19","author":"H Ma","year":"2022","unstructured":"Ma H, Sun Y, Wu N et al (2022) Relative attributes-based generative adversarial network for desert seismic noise suppression. IEEE Geosci Remote Sens Lett 19:1\u20135. https:\/\/doi.org\/10.1109\/LGRS.2021.3135034","journal-title":"IEEE Geosci Remote Sens Lett"},{"issue":"4","key":"10764_CR151","doi-asserted-by":"publisher","first-page":"1765","DOI":"10.1109\/TPAMI.2020.3027975","volume":"44","author":"Q Ma","year":"2022","unstructured":"Ma Q, Li S, Cottrell G (2022) Adversarial joint-learning recurrent neural network for incomplete time series classification. IEEE Trans Pattern Anal Mach Intell 44(4):1765\u20131776. https:\/\/doi.org\/10.1109\/TPAMI.2020.3027975","journal-title":"IEEE Trans Pattern Anal Mach Intell"},{"key":"10764_CR152","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1016\/j.earscirev.2021.103858","volume":"223","author":"Z Ma","year":"2021","unstructured":"Ma Z, Mei G (2021) Deep learning for geological hazards analysis: data, models, applications, and opportunities. Earth Sci Rev 223:1\u201333. https:\/\/doi.org\/10.1016\/j.earscirev.2021.103858","journal-title":"Earth Sci Rev"},{"issue":"1\u20132","key":"10764_CR153","doi-asserted-by":"publisher","first-page":"45","DOI":"10.1016\/j.epsl.2004.10.018","volume":"229","author":"B Malamud","year":"2004","unstructured":"Malamud B, Turcotte D, Guzzetti F et al (2004) Landslides, earthquakes, and erosion. Earth Planet Sci Lett 229(1\u20132):45\u201359. https:\/\/doi.org\/10.1016\/j.epsl.2004.10.018","journal-title":"Earth Planet Sci Lett"},{"key":"10764_CR154","unstructured":"Manepalli A, Albert A, Rhoades A, et\u00a0al (2019) Emulating numeric hydroclimate models with physics-informed CGANS. In: NeurIPS 2019 Workshop on Tackling Climate Change with Machine Learning, pp 1\u20134"},{"key":"10764_CR155","unstructured":"Mangipudi H, Mooers G, Pritchard MS, et\u00a0al (2021) Analyzing high-resolution clouds and convection using multi-channel vaes. arXiv preprint abs\/2112.01221:1\u20134. arXiv:2112.01221"},{"issue":"6","key":"10764_CR156","doi-asserted-by":"publisher","first-page":"1575","DOI":"10.3390\/rs2061575","volume":"2","author":"F Marchese","year":"2010","unstructured":"Marchese F, Ciampa M, Filizzola C et al (2010) On the exportability of robust satellite techniques (RST) for active volcano monitoring. Remote Sens 2(6):1575\u20131588. https:\/\/doi.org\/10.3390\/rs2061575","journal-title":"Remote Sens"},{"key":"10764_CR157","doi-asserted-by":"publisher","first-page":"2210","DOI":"10.3390\/rs14092210","volume":"14","author":"P Mazzanti","year":"2022","unstructured":"Mazzanti P, Scancella S, Virelli M et al (2022) Assessing the performance of multi-resolution satellite SAR images for post-earthquake damage detection and mapping aimed at emergency response management. Remote Sens 14:2210\u20132210. https:\/\/doi.org\/10.3390\/rs14092210","journal-title":"Remote Sens"},{"issue":"3","key":"10764_CR158","doi-asserted-by":"publisher","first-page":"441","DOI":"10.1002\/2017EF000686","volume":"6","author":"L McPhillips","year":"2018","unstructured":"McPhillips L, Chang H, Chester M et al (2018) Defining extreme events: a cross-disciplinary review. Earth\u2019s Future 6(3):441\u2013455. https:\/\/doi.org\/10.1002\/2017EF000686","journal-title":"Earth\u2019s Future"},{"issue":"5686","key":"10764_CR159","doi-asserted-by":"publisher","first-page":"994","DOI":"10.1126\/science.1098704","volume":"305","author":"G Meehl","year":"2004","unstructured":"Meehl G, Tebaldi C (2004) More intense, more frequent, and longer lasting heat waves in the 21st century. Science 305(5686):994\u2013997. https:\/\/doi.org\/10.1126\/science.1098704","journal-title":"Science"},{"issue":"1","key":"10764_CR160","doi-asserted-by":"publisher","first-page":"788","DOI":"10.1029\/2018JB016661","volume":"124","author":"MA Meier","year":"2019","unstructured":"Meier MA, Ross Z, Ramachandran A et al (2019) Reliable real-time seismic signal\/noise discrimination with machine learning. J Geophys Res Solid 124(1):788\u2013800. https:\/\/doi.org\/10.1029\/2018JB016661","journal-title":"J Geophys Res Solid"},{"issue":"3","key":"10764_CR161","doi-asserted-by":"publisher","first-page":"1109","DOI":"10.1002\/2015GL067100","volume":"43","author":"D Melgar","year":"2016","unstructured":"Melgar D, Allen R, Riquelme S et al (2016) Local tsunami warnings: perspectives from recent large events. Geophys Res Lett 43(3):1109\u20131117. https:\/\/doi.org\/10.1002\/2015GL067100","journal-title":"Geophys Res Lett"},{"key":"10764_CR162","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1109\/LGRS.2022.3152847","volume":"19","author":"F Meng","year":"2022","unstructured":"Meng F, Song T, Xu D (2022) Simulating tropical cyclone passive microwave rainfall imagery using infrared imagery via generative adversarial networks. IEEE Geosci Remote Sens Lett 19:1\u20135. https:\/\/doi.org\/10.1109\/LGRS.2022.3152847","journal-title":"IEEE Geosci Remote Sens Lett"},{"key":"10764_CR163","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1109\/TNNLS.2021.3123968","volume":"8","author":"Y Meng","year":"2021","unstructured":"Meng Y, Rigall E, Chen X et al (2021) Physics-guided generative adversarial networks for sea subsurface temperature prediction. IEEE Trans Neural Netw Learn Syst 8:1\u201314. https:\/\/doi.org\/10.1109\/TNNLS.2021.3123968","journal-title":"IEEE Trans Neural Netw Learn Syst"},{"key":"10764_CR164","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1109\/TGRS.2023.3257039","volume":"61","author":"Y Meng","year":"2023","unstructured":"Meng Y, Gao F, Rigall E et al (2023) Physical knowledge-enhanced deep neural network for sea surface temperature prediction. IEEE Geosci Remote Sens Lett 61:1\u201313. https:\/\/doi.org\/10.1109\/TGRS.2023.3257039","journal-title":"IEEE Geosci Remote Sens Lett"},{"issue":"7","key":"10764_CR165","doi-asserted-by":"publisher","first-page":"3357","DOI":"10.1109\/TNNLS.2021.3123968","volume":"34","author":"Y Meng","year":"2023","unstructured":"Meng Y, Rigall E, Chen X et al (2023) Physics-guided generative adversarial networks for sea subsurface temperature prediction. IEEE Trans Neural Netw Learn Syst 34(7):3357\u20133370. https:\/\/doi.org\/10.1109\/TNNLS.2021.3123968","journal-title":"IEEE Trans Neural Netw Learn Syst"},{"key":"10764_CR166","doi-asserted-by":"publisher","first-page":"155","DOI":"10.1016\/j.jappgeo.2015.11.005","volume":"124","author":"A Merritt","year":"2016","unstructured":"Merritt A, Chambers J, Wilkinson P et al (2016) Measurement and modelling of moisture-electrical resistivity relationship of fine-grained unsaturated soils and electrical anisotropy. J Appl Geophys 124:155\u2013165. https:\/\/doi.org\/10.1016\/j.jappgeo.2015.11.005","journal-title":"J Appl Geophys"},{"issue":"4","key":"10764_CR167","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1029\/2020RG000704","volume":"58","author":"B Merz","year":"2020","unstructured":"Merz B, Kuhlicke C, Kunz M et al (2020) Impact forecasting to support emergency management of natural hazards. Rev Geophys 58(4):1\u201352. https:\/\/doi.org\/10.1029\/2020RG000704","journal-title":"Rev Geophys"},{"issue":"12","key":"10764_CR168","doi-asserted-by":"publisher","first-page":"510","DOI":"10.1029\/2002WR001952","volume":"39","author":"R Merz","year":"2003","unstructured":"Merz R, Bl\u00f6schl G (2003) A process typology of regional floods. Water Resour Res 39(12):510\u2013520. https:\/\/doi.org\/10.1029\/2002WR001952","journal-title":"Water Resour Res"},{"key":"10764_CR169","unstructured":"Milidi\u00fa RL, M\u00fcller L (2020) Seismoglow - data augmentation for the class imbalance problem. ArXiv abs\/2007.12229:1\u201310. arXiv:2007.12229"},{"key":"10764_CR170","doi-asserted-by":"publisher","DOI":"10.1007\/s10346-023-02166-9","author":"DH Min","year":"2023","unstructured":"Min DH, Kim YS, Kim S et al (2023) Strategy of oversampling geotechnical parameters through geostatistical, smote, and ctgan methods for assessing susceptibility of landslide. Landslides. https:\/\/doi.org\/10.1007\/s10346-023-02166-9","journal-title":"Landslides"},{"issue":"7","key":"10764_CR171","doi-asserted-by":"publisher","first-page":"1","DOI":"10.3390\/rs11070760","volume":"11","author":"A Mondini","year":"2019","unstructured":"Mondini A, Santangelo M, Rocchetti M et al (2019) Sentinel-1 SAR amplitude imagery for rapid landslide detection. Remote Sens 11(7):1\u201327. https:\/\/doi.org\/10.3390\/rs11070760","journal-title":"Remote Sens"},{"key":"10764_CR172","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1016\/j.earscirev.2021.103574","volume":"216","author":"A Mondini","year":"2021","unstructured":"Mondini A, Guzzetti F, Chang KT et al (2021) Landslide failures detection and mapping using synthetic aperture radar: past, present and future. Earth Sci Rev 216:1\u201333. https:\/\/doi.org\/10.1016\/j.earscirev.2021.103574","journal-title":"Earth Sci Rev"},{"key":"10764_CR173","doi-asserted-by":"publisher","DOI":"10.1016\/j.earscirev.2021.103574","volume":"216","author":"AC Mondini","year":"2021","unstructured":"Mondini AC, Guzzetti F, Chang KT et al (2021) Landslide failures detection and mapping using synthetic aperture radar: past, present and future. Earth Sci. Rev. 216:103574. https:\/\/doi.org\/10.1016\/j.earscirev.2021.103574","journal-title":"Earth Sci. Rev."},{"key":"10764_CR174","doi-asserted-by":"publisher","unstructured":"Mooers G, Tuyls J, Mandt S, et\u00a0al (2020) Generative modeling of atmospheric convection. pp 98\u2013105, https:\/\/doi.org\/10.1145\/3429309.3429324","DOI":"10.1145\/3429309.3429324"},{"key":"10764_CR175","doi-asserted-by":"publisher","first-page":"22365","DOI":"10.1038\/s41598-023-49455-w","volume":"13","author":"G Mooers","year":"2023","unstructured":"Mooers G, Pritchard M, Beucler T et al (2023) Comparing storm resolving models and climates via unsupervised machine learning. Sci Rep 13:22365. https:\/\/doi.org\/10.1038\/s41598-023-49455-w","journal-title":"Sci Rep"},{"issue":"4","key":"10764_CR176","doi-asserted-by":"publisher","first-page":"2579","DOI":"10.1002\/2014JB011426","volume":"120","author":"L Moretti","year":"2015","unstructured":"Moretti L, Allstadt K, Mangeney A et al (2015) Numerical modeling of the mount meager landslide constrained by its force history derived from seismic data. J Geophys Res Solid 120(4):2579\u20132599. https:\/\/doi.org\/10.1002\/2014JB011426","journal-title":"J Geophys Res Solid"},{"key":"10764_CR177","doi-asserted-by":"publisher","unstructured":"Mosser L, Kimman W, Dramsch J, et\u00a0al (2018) Rapid seismic domain transfer: Seismic velocity inversion and modeling using deep generative neural networks. pp 1\u20135, https:\/\/doi.org\/10.3997\/2214-4609.201800734","DOI":"10.3997\/2214-4609.201800734"},{"issue":"1","key":"10764_CR178","doi-asserted-by":"publisher","first-page":"53","DOI":"10.1007\/s11004-019-09832-6","volume":"52","author":"L Mosser","year":"2020","unstructured":"Mosser L, Dubrule O, Blunt M (2020) Stochastic seismic waveform inversion using generative adversarial networks as a geological prior. Math Geosci 52(1):53\u201379. https:\/\/doi.org\/10.1007\/s11004-019-09832-6","journal-title":"Math Geosci"},{"issue":"11","key":"10764_CR179","doi-asserted-by":"publisher","first-page":"3185","DOI":"10.1002\/joc.4210","volume":"35","author":"C Muller","year":"2015","unstructured":"Muller C, Chapman L, Johnston S et al (2015) Crowdsourcing for climate and atmospheric sciences: current status and future potential. Int J Climatol 35(11):3185\u20133203. https:\/\/doi.org\/10.1002\/joc.4210","journal-title":"Int J Climatol"},{"issue":"9","key":"10764_CR180","doi-asserted-by":"publisher","first-page":"9684","DOI":"10.1109\/TCYB.2021.3053599","volume":"52","author":"AW Mulyadi","year":"2022","unstructured":"Mulyadi AW, Jun E, Suk HI (2022) Uncertainty-aware variational-recurrent imputation network for clinical time series. IEEE Trans Cybern 52(9):9684\u20139694. https:\/\/doi.org\/10.1109\/TCYB.2021.3053599","journal-title":"IEEE Trans Cybern"},{"key":"10764_CR181","doi-asserted-by":"publisher","first-page":"2111","DOI":"10.1007\/s10346-023-02104-9","volume":"20","author":"L Nava","year":"2023","unstructured":"Nava L, Carraro E, Reyes-Carmona C et al (2023) Landslide displacement forecasting using deep learning and monitoring data across selected sites. Landslides 20:2111\u20132129. https:\/\/doi.org\/10.1007\/s10346-023-02104-9","journal-title":"Landslides"},{"issue":"2","key":"10764_CR182","doi-asserted-by":"publisher","first-page":"545","DOI":"10.1002\/2014RG000477","volume":"53","author":"H Needham","year":"2015","unstructured":"Needham H, Keim B, Sathiaraj D (2015) A review of tropical cyclone-generated storm surges: global data sources, observations, and impacts. Rev Geophys 53(2):545\u2013591. https:\/\/doi.org\/10.1002\/2014RG000477","journal-title":"Rev Geophys"},{"key":"10764_CR183","doi-asserted-by":"publisher","first-page":"221","DOI":"10.1016\/j.epsl.2016.11.019","volume":"459","author":"M Obayashi","year":"2017","unstructured":"Obayashi M, Fukao Y, Yoshimitsu J (2017) Unusually deep Bonin earthquake of 30 May 2015: a precursory signal to slab penetration? Earth Planet Sci Lett 459:221\u2013226. https:\/\/doi.org\/10.1016\/j.epsl.2016.11.019","journal-title":"Earth Planet Sci Lett"},{"key":"10764_CR184","doi-asserted-by":"publisher","first-page":"144","DOI":"10.1016\/j.rse.2015.01.010","volume":"160","author":"P Oliva","year":"2015","unstructured":"Oliva P, Schroeder W (2015) Assessment of VIIRS 375m active fire detection product for direct burned area mapping. Remote Sens Environ 160:144\u2013155. https:\/\/doi.org\/10.1016\/j.rse.2015.01.010","journal-title":"Remote Sens Environ"},{"issue":"12","key":"10764_CR185","doi-asserted-by":"publisher","first-page":"1952","DOI":"10.1109\/LGRS.2018.2866199","volume":"15","author":"D Oliveira","year":"2018","unstructured":"Oliveira D, Ferreira R, Silva R et al (2018) Interpolating seismic data with conditional generative adversarial networks. IEEE Geosci Remote Sens Lett 15(12):1952\u20131956. https:\/\/doi.org\/10.1109\/LGRS.2018.2866199","journal-title":"IEEE Geosci Remote Sens Lett"},{"issue":"12","key":"10764_CR186","doi-asserted-by":"publisher","first-page":"1929","DOI":"10.1109\/LGRS.2019.2913593","volume":"16","author":"D Oliveira","year":"2019","unstructured":"Oliveira D, Ferreira R, Silva R et al (2019) Improving seismic data resolution with deep generative networks. IEEE Geosci Remote Sens Lett 16(12):1929\u20131933. https:\/\/doi.org\/10.1109\/LGRS.2019.2913593","journal-title":"IEEE Geosci Remote Sens Lett"},{"key":"10764_CR187","unstructured":"Oliveira DAB, Diaz JG, Zadrozny B, et\u00a0al (2021) Controlling weather field synthesis using variational autoencoders. In: ICML Climate Change AI Workshop, pp 1\u20135, arXiv:2108.00048"},{"key":"10764_CR188","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1038\/s41467-021-21327-9","volume":"12","author":"P Oswald","year":"2021","unstructured":"Oswald P, Strasser M, Hammerl C et al (2021) Seismic control of large prehistoric rockslides in the eastern alps. Nat Commun 12:1\u20138. https:\/\/doi.org\/10.1038\/s41467-021-21327-9","journal-title":"Nat Commun"},{"key":"10764_CR189","doi-asserted-by":"publisher","first-page":"2985","DOI":"10.1038\/s41467-021-22616-z","volume":"12","author":"S Otten","year":"2021","unstructured":"Otten S, Caron S, de Swart W et al (2021) Event generation and statistical sampling for physics with deep generative models and a density information buffer. Nat Commun 12:2985. https:\/\/doi.org\/10.1038\/s41467-021-22616-z","journal-title":"Nat Commun"},{"key":"10764_CR190","doi-asserted-by":"publisher","DOI":"10.3997\/2214-4609.202032054","author":"O Ovcharenko","year":"2020","unstructured":"Ovcharenko O, Hou S (2020) Deep learning for seismic data reconstruction: opportunities and challenges. Euro Assoc Geosci Eng. https:\/\/doi.org\/10.3997\/2214-4609.202032054","journal-title":"Euro Assoc Geosci Eng"},{"key":"10764_CR191","doi-asserted-by":"publisher","first-page":"5992","DOI":"10.1038\/s41598-023-32947-0","volume":"13","author":"N Oyama","year":"2023","unstructured":"Oyama N, Ishizaki NN, Koide S et al (2023) Deep generative model super-resolves spatially correlated multiregional climate data. Sci Rep 13:5992. https:\/\/doi.org\/10.1038\/s41598-023-32947-0","journal-title":"Sci Rep"},{"issue":"1","key":"10764_CR192","doi-asserted-by":"publisher","first-page":"155","DOI":"10.1007\/s10346-016-0705-7","volume":"14","author":"E Palis","year":"2017","unstructured":"Palis E, Lebourg T, Tric E et al (2017) Long-term monitoring of a large deep-seated landslide (la Clapiere, south-east French alps): initial study. Landslides 14(1):155\u2013170. https:\/\/doi.org\/10.1007\/s10346-016-0705-7","journal-title":"Landslides"},{"key":"10764_CR193","doi-asserted-by":"publisher","first-page":"144","DOI":"10.1016\/j.jvolgeores.2012.07.012","volume":"261","author":"J Pallister","year":"2013","unstructured":"Pallister J, Schneider D, Griswold J et al (2013) Merapi 2010 eruption-chronology and extrusion rates monitored with satellite radar and used in eruption forecasting. J Volcanol Geotherm Res 261:144\u2013152. https:\/\/doi.org\/10.1016\/j.jvolgeores.2012.07.012","journal-title":"J Volcanol Geotherm Res"},{"issue":"3","key":"10764_CR194","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1029\/2021MS002766","volume":"14","author":"B Pan","year":"2022","unstructured":"Pan B, Anderson G, Goncalves A et al (2022) Improving seasonal forecast using probabilistic deep learning. J Adv Model Earth Syst 14(3):1\u201324. https:\/\/doi.org\/10.1029\/2021MS002766","journal-title":"J Adv Model Earth Syst"},{"key":"10764_CR195","unstructured":"Pan H (2020) Cloud removal for remote sensing imagery via spatial attention generative adversarial network. arXiv preprint abs\/2009.13015:1\u20137. arXiv:2009.13015"},{"key":"10764_CR196","doi-asserted-by":"publisher","unstructured":"Park J, Yoon D, Seol S, et\u00a0al (2020a) Reconstruction of seismic field data with convolutional u-net considering the optimal training input data. pp 4650\u20134654, https:\/\/doi.org\/10.1190\/segam2019-3216017.1","DOI":"10.1190\/segam2019-3216017.1"},{"issue":"22","key":"10764_CR197","doi-asserted-by":"publisher","first-page":"1","DOI":"10.3390\/rs12223715","volume":"12","author":"M Park","year":"2020","unstructured":"Park M, Tran D, Jung D et al (2020) Wildfire-detection method using densenet and cyclegan data augmentation-based remote camera imagery. Remote Sens 12(22):1\u201316. https:\/\/doi.org\/10.3390\/rs12223715","journal-title":"Remote Sens"},{"issue":"7","key":"10764_CR198","doi-asserted-by":"publisher","first-page":"449","DOI":"10.1038\/ngeo1154","volume":"4","author":"R Parker","year":"2011","unstructured":"Parker R, Densmore A, Rosser N et al (2011) Mass wasting triggered by the 2008 Wenchuan earthquake is greater than orogenic growth. Nat Geosci 4(7):449\u2013452. https:\/\/doi.org\/10.1038\/ngeo1154","journal-title":"Nat Geosci"},{"issue":"2","key":"10764_CR199","doi-asserted-by":"publisher","first-page":"341","DOI":"10.1002\/2016RG000543","volume":"55","author":"J Peng","year":"2017","unstructured":"Peng J, Loew A, Merlin O et al (2017) A review of spatial downscaling of satellite remotely sensed soil moisture. Rev Geophys 55(2):341\u2013366. https:\/\/doi.org\/10.1002\/2016RG000543","journal-title":"Rev Geophys"},{"issue":"2","key":"10764_CR200","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1126\/sciadv.1700578","volume":"4","author":"T Perol","year":"2018","unstructured":"Perol T, Gharbi M, Denolle M (2018) Convolutional neural network for earthquake detection and location. Sci Adv 4(2):1\u20138. https:\/\/doi.org\/10.1126\/sciadv.1700578","journal-title":"Sci Adv"},{"issue":"3","key":"10764_CR201","doi-asserted-by":"publisher","first-page":"15","DOI":"10.1190\/INT-2018-0232.1","volume":"7","author":"F Picetti","year":"2019","unstructured":"Picetti F, Lipari V, Bestagini P et al (2019) Seismic image processing through the generative adversarial network. Interpretation (United Kingdom) 7(3):15\u201326. https:\/\/doi.org\/10.1190\/INT-2018-0232.1","journal-title":"Interpretation (United Kingdom)"},{"issue":"9","key":"10764_CR202","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1007\/s00445-015-0957-4","volume":"77","author":"S Potter","year":"2015","unstructured":"Potter S, Scott B, Jolly G et al (2015) Introducing the volcanic unrest index (VUI): a tool to quantify and communicate the intensity of volcanic unrest. Bull Volcanol 77(9):1\u201315. https:\/\/doi.org\/10.1007\/s00445-015-0957-4","journal-title":"Bull Volcanol"},{"key":"10764_CR203","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1016\/j.soildyn.2019.105909","volume":"129","author":"B Poursartip","year":"2020","unstructured":"Poursartip B, Fathi A, Tassoulas J (2020) Large-scale simulation of seismic wave motion: a review. Soil Dyn Earthquake Eng 129:1\u201335. https:\/\/doi.org\/10.1016\/j.soildyn.2019.105909","journal-title":"Soil Dyn Earthquake Eng"},{"key":"10764_CR204","unstructured":"Qian K, Mohamed AA, Claudel CG (2019) Physics informed data driven model for flood prediction: Application of deep learning in prediction of urban flood development. arXiv preprint abs\/1908.10312:1\u201334. arXiv:1908.10312"},{"issue":"10","key":"10764_CR205","doi-asserted-by":"publisher","first-page":"6688","DOI":"10.1109\/TGRS.2014.2301415","volume":"52","author":"B Rasti","year":"2014","unstructured":"Rasti B, Sveinsson J, Ulfarsson M (2014) Wavelet-based sparse reduced-rank regression for hyperspectral image restoration. IEEE Trans Geosci Remote Sens 52(10):6688\u20136698. https:\/\/doi.org\/10.1109\/TGRS.2014.2301415","journal-title":"IEEE Trans Geosci Remote Sens"},{"key":"10764_CR206","doi-asserted-by":"publisher","first-page":"672","DOI":"10.1038\/s41586-021-03854-z","volume":"597","author":"SV Ravuri","year":"2021","unstructured":"Ravuri SV, Lenc K, Willson M et al (2021) Skilful precipitation nowcasting using deep generative models of radar. Nature 597:672\u2013677. https:\/\/doi.org\/10.1038\/s41586-021-03854-z","journal-title":"Nature"},{"key":"10764_CR207","doi-asserted-by":"publisher","first-page":"18","DOI":"10.1016\/j.jvolgeores.2016.04.027","volume":"321","author":"K Reath","year":"2016","unstructured":"Reath K, Ramsey M, Dehn J et al (2016) Predicting eruptions from precursory activity using remote sensing data hybridization. J Volcanol Geotherm Res 321:18\u201330. https:\/\/doi.org\/10.1016\/j.jvolgeores.2016.04.027","journal-title":"J Volcanol Geotherm Res"},{"issue":"1","key":"10764_CR208","doi-asserted-by":"publisher","first-page":"195","DOI":"10.1029\/2018JB016199","volume":"124","author":"K Reath","year":"2019","unstructured":"Reath K, Pritchard M, Poland M et al (2019) Thermal, deformation, and degassing remote sensing time series at the 47 most active volcanoes in Latin America: implications for volcanic systems. J Geophys Res Solid 124(1):195\u2013218. https:\/\/doi.org\/10.1029\/2018JB016199","journal-title":"J Geophys Res Solid"},{"issue":"7","key":"10764_CR209","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1029\/2008GL036953","volume":"36","author":"J Rego","year":"2009","unstructured":"Rego J, Li C (2009) On the importance of the forward speed of hurricanes in storm surge forecasting: a numerical study. Geophys Res Lett 36(7):1\u20135. https:\/\/doi.org\/10.1029\/2008GL036953","journal-title":"Geophys Res Lett"},{"key":"10764_CR210","unstructured":"Reimers SC., Tibau Alberdi XA, Requena-MEsa SC., et\u00a0al (2018) SupernoVAE: Using deep learning to find spatio-temporal dynamics in Earth system data. In: AGU Fall Meeting Abstracts, pp 1\u20134"},{"issue":"11\u201312","key":"10764_CR211","doi-asserted-by":"publisher","first-page":"1133","DOI":"10.1016\/j.coastaleng.2009.08.006","volume":"56","author":"D Roelvink","year":"2009","unstructured":"Roelvink D, Reniers A, van Dongeren A et al (2009) Modelling storm impacts on beaches, dunes and barrier islands. Coastal Eng 56(11\u201312):1133\u20131152. https:\/\/doi.org\/10.1016\/j.coastaleng.2009.08.006","journal-title":"Coastal Eng"},{"key":"10764_CR212","doi-asserted-by":"publisher","first-page":"1","DOI":"10.3390\/rs13214284","volume":"13","author":"X Rui","year":"2021","unstructured":"Rui X, Cao Y, Yuan X et al (2021) Disastergan: generative adversarial networks for remote sensing disaster image generation. Remote Sens 13:1\u201318. https:\/\/doi.org\/10.3390\/rs13214284","journal-title":"Remote Sens"},{"key":"10764_CR213","doi-asserted-by":"crossref","unstructured":"Ruthotto L, Haber E (2021) An introduction to deep generative modeling. arXiv preprint abs\/2108.08952:1\u201326. arXiv:2103.05180","DOI":"10.1002\/gamm.202100008"},{"key":"10764_CR214","unstructured":"Ruzicka V, Vaughan A, Martini D, et\u00a0al (2021) Unsupervised change detection of extreme events using ml on-board. ArXiv abs\/2111.02995:1\u20135. arXiv:2111.02995"},{"issue":"3","key":"10764_CR215","doi-asserted-by":"publisher","first-page":"1009","DOI":"10.1111\/j.1365-246X.2006.03312.x","volume":"169","author":"I Ryder","year":"2007","unstructured":"Ryder I, Parsons B, Wright T et al (2007) Post-seismic motion following the 1997 Manyi (Tibet) earthquake: INSAR observations and modelling. Geophys J Int 169(3):1009\u20131027. https:\/\/doi.org\/10.1111\/j.1365-246X.2006.03312.x","journal-title":"Geophys J Int"},{"issue":"6400","key":"10764_CR216","doi-asserted-by":"publisher","first-page":"360","DOI":"10.1126\/science.aat2663","volume":"361","author":"B Sanchez-Lengeling","year":"2018","unstructured":"Sanchez-Lengeling B, Aspuru-Guzik A (2018) Inverse molecular design using machine learning: generative models for matter engineering. Science 361(6400):360\u2013365. https:\/\/doi.org\/10.1126\/science.aat2663","journal-title":"Science"},{"issue":"6","key":"10764_CR217","doi-asserted-by":"publisher","first-page":"3207","DOI":"10.5194\/hess-25-3207-2021","volume":"25","author":"S Scher","year":"2021","unstructured":"Scher S, Pe\u00dfenteiner S (2021) Temporal disaggregation of spatial rainfall fields with generative adversarial networks. Hydrol Earth Syst Sci 25(6):3207\u20133225. https:\/\/doi.org\/10.5194\/hess-25-3207-2021","journal-title":"Hydrol Earth Syst Sci"},{"key":"10764_CR218","unstructured":"Schmidt V, Luccioni AS, Mukkavilli SK, et\u00a0al (2019) Visualizing the consequences of climate change using cycle-consistent adversarial networks. arXiv preprint abs\/1905.03709:1\u20137. arXiv:1905.03709"},{"key":"10764_CR219","unstructured":"Schmidt V, Muhammed MA, Sankaran K, et\u00a0al (2020) Modeling cloud reflectance fields using conditional generative adversarial networks. In: ICLR 2020 Workshop on Tackling Climate Change with Machine Learning, pp 1\u20139, arXiv:2002.07579"},{"key":"10764_CR220","unstructured":"Schmidt V, Luccioni AS, Teng M, et\u00a0al (2021) Climategan: Raising climate change awareness by generating images of floods. arXiv preprint abs\/2110.02871:1\u201327. arXiv:1905.03709"},{"issue":"2","key":"10764_CR221","doi-asserted-by":"publisher","first-page":"456","DOI":"10.1016\/j.rse.2007.05.004","volume":"112","author":"W Schroeder","year":"2008","unstructured":"Schroeder W, Csiszar I, Morisette J (2008) Quantifying the impact of cloud obscuration on remote sensing of active fires in the Brazilian amazon. Remote Sens Environ 112(2):456\u2013470. https:\/\/doi.org\/10.1016\/j.rse.2007.05.004","journal-title":"Remote Sens Environ"},{"key":"10764_CR222","doi-asserted-by":"publisher","unstructured":"Sen S, Kainkaryam S, Ong C, et\u00a0al (2020) Saltseg: A \u00df-variational autoencoder constrained encoder-decoder architecture for accurate geologic interpretation. pp 2493\u20132497, https:\/\/doi.org\/10.1190\/segam2019-3216875.1","DOI":"10.1190\/segam2019-3216875.1"},{"key":"10764_CR223","doi-asserted-by":"publisher","DOI":"10.1016\/j.cageo.2023.105451","volume":"180","author":"A Senogles","year":"2023","unstructured":"Senogles A, Olsen MJ, Leshchinsky B (2023) Ladi: landslide displacement interpolation through a spatial-temporal Kalman filter. Comput Geosci 180:105451. https:\/\/doi.org\/10.1016\/j.cageo.2023.105451","journal-title":"Comput Geosci"},{"key":"10764_CR224","doi-asserted-by":"publisher","DOI":"10.1016\/j.eswa.2023.122908","volume":"244","author":"P Shao","year":"2024","unstructured":"Shao P, Feng J, Lu J et al (2024) Data-driven and knowledge-guided denoising diffusion model for flood forecasting. Expert Syst Appl 244:122908. https:\/\/doi.org\/10.1016\/j.eswa.2023.122908","journal-title":"Expert Syst Appl"},{"key":"10764_CR225","doi-asserted-by":"publisher","first-page":"552","DOI":"10.1038\/s43017-023-00450-9","volume":"4","author":"C Shen","year":"2023","unstructured":"Shen C, Appling AP, Gentine P et al (2023) Differentiable modelling to unify machine learning and physical models for geosciences. Nat Rev Earth Environ 4:552\u2013567. https:\/\/doi.org\/10.1038\/s43017-023-00450-9","journal-title":"Nat Rev Earth Environ"},{"key":"10764_CR226","doi-asserted-by":"publisher","unstructured":"Siahkoohi A, Kumar R, Herrmann F (2018) Seismic data reconstruction with generative adversarial networks. pp 1\u20135, https:\/\/doi.org\/10.3997\/2214-4609.201801393","DOI":"10.3997\/2214-4609.201801393"},{"key":"10764_CR227","doi-asserted-by":"publisher","unstructured":"Sinha S, Giffard-Roisin S, Karbou F, et\u00a0al (2020) Variational autoencoder anomaly-detection of avalanche deposits in satellite SAR imagery. pp 113\u2013119, https:\/\/doi.org\/10.1145\/3429309.3429326","DOI":"10.1145\/3429309.3429326"},{"issue":"1","key":"10764_CR228","doi-asserted-by":"publisher","first-page":"1","DOI":"10.5194\/gc-3-1-2020","volume":"3","author":"C Skinner","year":"2020","unstructured":"Skinner C (2020) Flash flood!: a serious geogames activity combining science festivals, video games, and virtual reality with research data for communicating flood risk and geomorphology. Geosci Commun 3(1):1\u201317. https:\/\/doi.org\/10.5194\/gc-3-1-2020","journal-title":"Geosci Commun"},{"key":"10764_CR229","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1109\/TGRS.2021.3066975","volume":"60","author":"S Song","year":"2022","unstructured":"Song S, Mukerji T, Hou J (2022) Bridging the gap between geophysics and geology with generative adversarial networks. IEEE Trans Geosci Remote Sens 60:1\u201312. https:\/\/doi.org\/10.1109\/TGRS.2021.3066975","journal-title":"IEEE Trans Geosci Remote Sens"},{"issue":"7","key":"10764_CR230","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1088\/1748-9326\/ac0eb0","volume":"16","author":"M Sonnewald","year":"2021","unstructured":"Sonnewald M, Lguensat R, Jones D et al (2021) Bridging observations, theory and numerical simulation of the ocean using machine learning. Environ Res Lett 16(7):1\u201336. https:\/\/doi.org\/10.1088\/1748-9326\/ac0eb0","journal-title":"Environ Res Lett"},{"issue":"1\u20132","key":"10764_CR231","doi-asserted-by":"publisher","first-page":"53","DOI":"10.1016\/S0013-7952(02)00198-9","volume":"68","author":"C Squarzoni","year":"2003","unstructured":"Squarzoni C, Delacourt C, Allemand P (2003) Nine years of spatial and temporal evolution of the la Valette landslide observed by SAR interferometry. Eng Geol 68(1\u20132):53\u201366. https:\/\/doi.org\/10.1016\/S0013-7952(02)00198-9","journal-title":"Eng Geol"},{"issue":"29","key":"10764_CR232","doi-asserted-by":"publisher","first-page":"16805","DOI":"10.1073\/pnas.1918964117","volume":"117","author":"K Stengel","year":"2020","unstructured":"Stengel K, Glaws A, Hettinger D et al (2020) Adversarial super-resolution of climatological wind and solar data. Proc Natl Acad Sci USA 117(29):16805\u201316815. https:\/\/doi.org\/10.1073\/pnas.1918964117","journal-title":"Proc Natl Acad Sci USA"},{"issue":"1","key":"10764_CR233","doi-asserted-by":"publisher","first-page":"50","DOI":"10.1002\/2017RG000567","volume":"56","author":"H Steptoe","year":"2018","unstructured":"Steptoe H, Jones S, Fox H (2018) Correlations between extreme atmospheric hazards and global teleconnections: implications for multihazard resilience. Rev Geophys 56(1):50\u201378. https:\/\/doi.org\/10.1002\/2017RG000567","journal-title":"Rev Geophys"},{"issue":"20","key":"10764_CR234","doi-asserted-by":"publisher","first-page":"11137","DOI":"10.1029\/2018GL080404","volume":"45","author":"A Sun","year":"2018","unstructured":"Sun A (2018) Discovering state-parameter mappings in subsurface models using generative adversarial networks. Geophys Res Lett 45(20):11137\u201311146. https:\/\/doi.org\/10.1029\/2018GL080404","journal-title":"Geophys Res Lett"},{"issue":"1","key":"10764_CR235","doi-asserted-by":"publisher","first-page":"79","DOI":"10.1002\/2017RG000574","volume":"56","author":"Q Sun","year":"2018","unstructured":"Sun Q, Miao C, Duan Q et al (2018) A review of global precipitation data sets: data sources, estimation, and intercomparisons. Rev Geophys 56(1):79\u2013107. https:\/\/doi.org\/10.1002\/2017RG000574","journal-title":"Rev Geophys"},{"key":"10764_CR236","doi-asserted-by":"publisher","first-page":"3396","DOI":"10.1038\/s41598-024-52773-2","volume":"14","author":"D Szwarcman","year":"2024","unstructured":"Szwarcman D, Guevara J, Macedo MMG et al (2024) Quantizing reconstruction losses for improving weather data synthesis. Sci Rep 14:3396. https:\/\/doi.org\/10.1038\/s41598-024-52773-2","journal-title":"Sci Rep"},{"key":"10764_CR237","doi-asserted-by":"publisher","first-page":"34","DOI":"10.1016\/j.quaint.2019.09.016","volume":"532","author":"M Tallini","year":"2019","unstructured":"Tallini M, Spadi M, Cosentino D et al (2019) High-resolution seismic reflection exploration for evaluating the seismic hazard in a Plio-quaternary intermontane basin (l\u2019aquila downtown, central Italy). Quat Int 532:34\u201347. https:\/\/doi.org\/10.1016\/j.quaint.2019.09.016","journal-title":"Quat Int"},{"key":"10764_CR238","doi-asserted-by":"publisher","unstructured":"Tan R (2008) Visibility in bad weather from a single image. pp 1\u20137, https:\/\/doi.org\/10.1109\/CVPR.2008.4587643","DOI":"10.1109\/CVPR.2008.4587643"},{"issue":"10","key":"10764_CR239","doi-asserted-by":"publisher","first-page":"1991","DOI":"10.1002\/2017JF004236","volume":"122","author":"H Tanya\u015f","year":"2017","unstructured":"Tanya\u015f H, van Westen C, Allstadt K et al (2017) Presentation and analysis of a worldwide database of earthquake-induced landslide inventories. J Geophys Res: Earth Surf 122(10):1991\u20132015. https:\/\/doi.org\/10.1002\/2017JF004236","journal-title":"J Geophys Res: Earth Surf"},{"key":"10764_CR240","doi-asserted-by":"publisher","first-page":"4323","DOI":"10.1007\/s10064-021-02238-x","volume":"80","author":"H Tanyas","year":"2021","unstructured":"Tanyas H, Kirschbaum D, Lombardo L (2021) Capturing the footprints of ground motion in the spatial distribution of rainfall-induced landslides. Bull Eng Geol Environ 80:4323\u20134345. https:\/\/doi.org\/10.1007\/s10064-021-02238-x","journal-title":"Bull Eng Geol Environ"},{"key":"10764_CR241","unstructured":"Tashiro Y, Song J, Song Y, et\u00a0al (2021) Csdi: Conditional score-based diffusion models for probabilistic time series imputation. In: Ranzato M, Beygelzimer A, Dauphin Y, et\u00a0al (eds) Advances in Neural Information Processing Systems, vol\u00a034. Curran Associates, Inc., pp 24804\u201324816, https:\/\/proceedings.neurips.cc\/paper_files\/paper\/2021\/file\/cfe8504bda37b575c70ee1a8276f3486-Paper.pdf"},{"key":"10764_CR242","doi-asserted-by":"publisher","DOI":"10.1007\/1-4020-3607-8_3","author":"V Titov","year":"2005","unstructured":"Titov V, Gonz\u00e1lez F, Bernard E et al (2005) Real-time tsunami forecasting: challenges and solutions. Nat Hazards. https:\/\/doi.org\/10.1007\/1-4020-3607-8_3","journal-title":"Nat Hazards"},{"issue":"14","key":"10764_CR243","doi-asserted-by":"publisher","first-page":"2106","DOI":"10.1002\/hyp.7983","volume":"26","author":"J Travelletti","year":"2012","unstructured":"Travelletti J, Sailhac P, Malet JP et al (2012) Hydrological response of weathered clay-shale slopes: water infiltration monitoring with time-lapse electrical resistivity tomography. Hydrol Processes 26(14):2106\u20132119. https:\/\/doi.org\/10.1002\/hyp.7983","journal-title":"Hydrol Processes"},{"issue":"7","key":"10764_CR244","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1029\/2020WR028392","volume":"57","author":"M Troin","year":"2021","unstructured":"Troin M, Arsenault R, Wood A et al (2021) Generating ensemble streamflow forecasts: a review of methods and approaches over the past 40 years. Water Resour Res 57(7):1\u201348. https:\/\/doi.org\/10.1029\/2020WR028392","journal-title":"Water Resour Res"},{"issue":"5","key":"10764_CR245","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1029\/2019GL086302","volume":"47","author":"V Tsai","year":"2020","unstructured":"Tsai V, Hirth G (2020) Elastic impact consequences for high-frequency earthquake ground motion. Geophys Res Lett 47(5):1\u20138. https:\/\/doi.org\/10.1029\/2019GL086302","journal-title":"Geophys Res Lett"},{"key":"10764_CR246","doi-asserted-by":"publisher","DOI":"10.1038\/s41467-021-26107-z","author":"WP Tsai","year":"2021","unstructured":"Tsai WP, Feng D, Pan M et al (2021) From calibration to parameter learning: harnessing the scaling effects of big data in geoscientific modeling. Nat Commun. https:\/\/doi.org\/10.1038\/s41467-021-26107-z","journal-title":"Nat Commun"},{"key":"10764_CR247","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1038\/s43247-023-01084-x","volume":"4","author":"SA Vaghefi","year":"2023","unstructured":"Vaghefi SA, Stammbach D, Muccione V et al (2023) Chatclimate: grounding conversational AI in climate science. Commun Earth Environ 4:1\u201313. https:\/\/doi.org\/10.1038\/s43247-023-01084-x","journal-title":"Commun Earth Environ"},{"key":"10764_CR248","doi-asserted-by":"publisher","unstructured":"Vandal T, Kodra E, Ganguly S, et\u00a0al (2018) Generating high resolution climate change projections through single image super-resolution: An abridged version. pp 5389\u20135393, https:\/\/doi.org\/10.24963\/ijcai.2018\/759","DOI":"10.24963\/ijcai.2018\/759"},{"key":"10764_CR249","doi-asserted-by":"publisher","DOI":"10.1029\/2022jd038163","author":"E Vosper","year":"2023","unstructured":"Vosper E, Watson P, Harris L et al (2023) Deep learning for downscaling tropical cyclone rainfall to hazard-relevant spatial scales. J Geophys Res Atmos. https:\/\/doi.org\/10.1029\/2022jd038163","journal-title":"J Geophys Res Atmos"},{"key":"10764_CR250","doi-asserted-by":"publisher","first-page":"5003","DOI":"10.1021\/acs.est.3c05784","volume":"58","author":"HL Wander","year":"2024","unstructured":"Wander HL, Farruggia MJ, Fuente SL et al (2024) Using knowledge-guided machine learning to assess patterns of areal change in waterbodies across the contiguous united states. Environ Sci Technol 58:5003\u20135013. https:\/\/doi.org\/10.1021\/acs.est.3c05784","journal-title":"Environ Sci Technol"},{"key":"10764_CR251","doi-asserted-by":"publisher","DOI":"10.1029\/2020gl092032","author":"C Wang","year":"2021","unstructured":"Wang C, Tang G, Gentine P (2021) Precipgan: merging microwave and infrared data for satellite precipitation estimation using generative adversarial network. Geophys Res Lett. https:\/\/doi.org\/10.1029\/2020gl092032","journal-title":"Geophys Res Lett"},{"key":"10764_CR252","doi-asserted-by":"publisher","first-page":"5735","DOI":"10.1109\/JSTARS.2021.3083647","volume":"14","author":"C Wang","year":"2021","unstructured":"Wang C, Wang P, Wang P et al (2021) Using conditional generative adversarial 3-d convolutional neural network for precise radar extrapolation. IEEE J Sel Top Appl Earth Obs Remote Sens 14:5735\u20135749. https:\/\/doi.org\/10.1109\/JSTARS.2021.3083647","journal-title":"IEEE J Sel Top Appl Earth Obs Remote Sens"},{"issue":"8","key":"10764_CR253","doi-asserted-by":"publisher","first-page":"7062","DOI":"10.1109\/TGRS.2020.3030692","volume":"59","author":"H Wang","year":"2021","unstructured":"Wang H, Li Y, Dong X (2021) Generative adversarial network for desert seismic data denoising. IEEE Trans Geosci Remote Sens 59(8):7062\u20137075. https:\/\/doi.org\/10.1109\/TGRS.2020.3030692","journal-title":"IEEE Trans Geosci Remote Sens"},{"issue":"10","key":"10764_CR254","doi-asserted-by":"publisher","first-page":"6355","DOI":"10.5194\/gmd-14-6355-2021","volume":"14","author":"J Wang","year":"2021","unstructured":"Wang J, Liu Z, Foster I et al (2021) Fast and accurate learned multiresolution dynamical downscaling for precipitation. Geosci Model Dev 14(10):6355\u20136372. https:\/\/doi.org\/10.5194\/gmd-14-6355-2021","journal-title":"Geosci Model Dev"},{"key":"10764_CR255","doi-asserted-by":"publisher","first-page":"207","DOI":"10.3390\/rs12020207","volume":"12","author":"S Wang","year":"2020","unstructured":"Wang S, Chen W, Xie SM et al (2020) Weakly supervised deep learning for segmentation of remote sensing imagery. Remote Sens 12:207. https:\/\/doi.org\/10.3390\/rs12020207","journal-title":"Remote Sens"},{"issue":"4","key":"10764_CR256","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1029\/2020JB020077","volume":"126","author":"T Wang","year":"2021","unstructured":"Wang T, Trugman D, Lin Y (2021) Seismogen: seismic waveform synthesis using GAN with application to seismic data augmentation. J Geophys Res Solid 126(4):1\u201331. https:\/\/doi.org\/10.1029\/2020JB020077","journal-title":"J Geophys Res Solid"},{"key":"10764_CR257","doi-asserted-by":"publisher","DOI":"10.1073\/pnas.2203656119","author":"Y Wang","year":"2022","unstructured":"Wang Y, Herron L, Tiwary P (2022) From data to noise to data for mixing physics across temperatures with generative artificial intelligence. Proc Natl Acad Sci USA. https:\/\/doi.org\/10.1073\/pnas.2203656119","journal-title":"Proc Natl Acad Sci USA"},{"issue":"2","key":"10764_CR258","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1145\/3439723","volume":"54","author":"Z Wang","year":"2021","unstructured":"Wang Z, She Q, Ward T (2021) Generative adversarial networks in computer vision: a survey and taxonomy. ACM Comput Surv 54(2):1\u201341. https:\/\/doi.org\/10.1145\/3439723","journal-title":"ACM Comput Surv"},{"key":"10764_CR259","unstructured":"Watson CD, Wang C, Lynar TM, et\u00a0al (2020) Investigating two super-resolution methods for downscaling precipitation: Esrgan and car. arXiv preprint abs\/2012.01233:1\u20135. arXiv:2012.01233"},{"key":"10764_CR260","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1016\/j.cageo.2021.104801","volume":"154","author":"Q Wei","year":"2021","unstructured":"Wei Q, Li X, Song M (2021) De-aliased seismic data interpolation using conditional Wasserstein generative adversarial networks. Comput Geosci 154:1\u201313. https:\/\/doi.org\/10.1016\/j.cageo.2021.104801","journal-title":"Comput Geosci"},{"key":"10764_CR261","doi-asserted-by":"publisher","first-page":"471","DOI":"10.1190\/geo2020-0644.1","volume":"86","author":"Q Wei","year":"2021","unstructured":"Wei Q, Li X, Song M (2021) Reconstruction of irregular missing seismic data using conditional generative adversarial networks. Geophysics 86:471\u2013488. https:\/\/doi.org\/10.1190\/geo2020-0644.1","journal-title":"Geophysics"},{"issue":"6","key":"10764_CR262","doi-asserted-by":"publisher","first-page":"1","DOI":"10.3390\/rs13061079","volume":"13","author":"X Wen","year":"2021","unstructured":"Wen X, Pan Z, Hu Y et al (2021) Generative adversarial learning in YUV color space for thin cloud removal on satellite imagery. Remote Sens 13(6):1\u201322. https:\/\/doi.org\/10.3390\/rs13061079","journal-title":"Remote Sens"},{"key":"10764_CR263","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1016\/j.rse.2019.111291","volume":"232","author":"H West","year":"2019","unstructured":"West H, Quinn N, Horswell M (2019) Remote sensing for drought monitoring and impact assessment: progress, past challenges and future opportunities. Remote Sens Environ 232:1\u201314. https:\/\/doi.org\/10.1016\/j.rse.2019.111291","journal-title":"Remote Sens Environ"},{"issue":"3\u20134","key":"10764_CR264","doi-asserted-by":"publisher","first-page":"112","DOI":"10.1016\/j.enggeo.2008.03.010","volume":"102","author":"C van Westen","year":"2008","unstructured":"van Westen C, Castellanos E, Kuriakose S (2008) Spatial data for landslide susceptibility, hazard, and vulnerability assessment: an overview. Eng Geol 102(3\u20134):112\u2013131. https:\/\/doi.org\/10.1016\/j.enggeo.2008.03.010","journal-title":"Eng Geol"},{"key":"10764_CR265","unstructured":"White B, Singh A, Albert A (2019) Downscaling numerical weather models with gans. pp 1\u20134"},{"issue":"1","key":"10764_CR266","doi-asserted-by":"publisher","first-page":"106","DOI":"10.1029\/2018RG000603","volume":"57","author":"J Whiteley","year":"2019","unstructured":"Whiteley J, Chambers J, Uhlemann S et al (2019) Geophysical monitoring of moisture-induced landslides: a review. Rev Geophys 57(1):106\u2013145. https:\/\/doi.org\/10.1029\/2018RG000603","journal-title":"Rev Geophys"},{"issue":"5","key":"10764_CR267","doi-asserted-by":"publisher","first-page":"1","DOI":"10.3390\/rs13050909","volume":"13","author":"B Wu","year":"2021","unstructured":"Wu B, Meng D, Zhao H (2021) Semi-supervised learning for seismic impedance inversion using generative adversarial networks. Remote Sens 13(5):1\u201317. https:\/\/doi.org\/10.3390\/rs13050909","journal-title":"Remote Sens"},{"key":"10764_CR268","doi-asserted-by":"publisher","DOI":"10.1016\/j.atmosres.2020.105281","author":"H Xie","year":"2021","unstructured":"Xie H, Wu L, Xie W et al (2021) Improving ECMWF short-term intensive rainfall forecasts using generative adversarial nets and deep belief networks. Atmos Res. https:\/\/doi.org\/10.1016\/j.atmosres.2020.105281","journal-title":"Atmos Res"},{"key":"10764_CR269","doi-asserted-by":"publisher","first-page":"103828","DOI":"10.1016\/j.earscirev.2021.103828","volume":"222","author":"L Xu","year":"2021","unstructured":"Xu L, Chen N, Chen Z et al (2021) Spatiotemporal forecasting in earth system science: methods, uncertainties, predictability and future directions. Earth Sci Res 222:103828\u2013103828. https:\/\/doi.org\/10.1016\/j.earscirev.2021.103828","journal-title":"Earth Sci Res"},{"issue":"1","key":"10764_CR270","doi-asserted-by":"publisher","first-page":"572","DOI":"10.1109\/TCYB.2023.3291049","volume":"54","author":"X Xu","year":"2024","unstructured":"Xu X, Zhong T, Zhou F et al (2024) Learning spatiotemporal manifold representation for probabilistic land deformation prediction. IEEE Trans Cybern 54(1):572\u2013585. https:\/\/doi.org\/10.1109\/TCYB.2023.3291049","journal-title":"IEEE Trans Cybern"},{"key":"10764_CR271","doi-asserted-by":"publisher","unstructured":"Xu Y, Yang H, Cheng M, et\u00a0al (2019) Cyclone intensity estimate with context-aware cyclegan. pp 3417\u20133421, https:\/\/doi.org\/10.1109\/ICIP.2019.8803598","DOI":"10.1109\/ICIP.2019.8803598"},{"key":"10764_CR272","doi-asserted-by":"publisher","unstructured":"Yamaguchi A, Cabatuan M (2018) Generative model based frame generation of volcanic flow video. pp 1\u20135, https:\/\/doi.org\/10.1109\/HNICEM.2017.8269503","DOI":"10.1109\/HNICEM.2017.8269503"},{"key":"10764_CR273","doi-asserted-by":"publisher","DOI":"10.1029\/2022jb025493","author":"F Yang","year":"2023","unstructured":"Yang F, Ma J (2023) Fwigan: full-waveform inversion via a physics-informed generative adversarial network. J Geophys Res Solid Earth. https:\/\/doi.org\/10.1029\/2022jb025493","journal-title":"J Geophys Res Solid Earth"},{"key":"10764_CR274","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1145\/3626235","volume":"56","author":"L Yang","year":"2023","unstructured":"Yang L, Zhang Z, Song Y et al (2023) Diffusion models: a comprehensive survey of methods and applications. ACM Comput Surv 56:1\u201339. https:\/\/doi.org\/10.1145\/3626235","journal-title":"ACM Comput Surv"},{"key":"10764_CR275","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1109\/TGRS.2022.3144636","volume":"60","author":"Y Yang","year":"2022","unstructured":"Yang Y, Zhang X, Guan Q et al (2022) Making invisible visible: data-driven seismic inversion with spatio-temporally constrained data augmentation. IEEE Trans Geosci Remote Sens 60:1\u201313. https:\/\/doi.org\/10.1109\/TGRS.2022.3144636","journal-title":"IEEE Trans Geosci Remote Sens"},{"issue":"3","key":"10764_CR276","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1029\/2021RG000742","volume":"59","author":"S Yu","year":"2021","unstructured":"Yu S, Ma J (2021) Deep learning for geophysics: current and future trends. Rev Geophys 59(3):1\u201336. https:\/\/doi.org\/10.1029\/2021RG000742","journal-title":"Rev Geophys"},{"issue":"10","key":"10764_CR277","doi-asserted-by":"publisher","first-page":"2340","DOI":"10.1109\/TGRS.2005.856114","volume":"43","author":"Y Yu","year":"2005","unstructured":"Yu Y, Privette J, Pinheiro A (2005) Analysis of the NPOESS VIIRS land surface temperature algorithm using MODIS data. IEEE Trans Geosci Remote Sens 43(10):2340\u20132349. https:\/\/doi.org\/10.1109\/TGRS.2005.856114","journal-title":"IEEE Trans Geosci Remote Sens"},{"key":"10764_CR278","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1109\/TGRS.2023.3336546","volume":"61","author":"J Yuan","year":"2023","unstructured":"Yuan J, Liu T, Xia H et al (2023) A novel dense generative net based on satellite remote sensing images for vehicle classification under foggy weather conditions. IEEE Trans Geosci Remote Sens 61:1\u201310. https:\/\/doi.org\/10.1109\/TGRS.2023.3336546","journal-title":"IEEE Trans Geosci Remote Sens"},{"issue":"2","key":"10764_CR279","doi-asserted-by":"publisher","first-page":"250","DOI":"10.1109\/MGRS.2022.3161377","volume":"10","author":"J Yue","year":"2022","unstructured":"Yue J, Fang L, Ghamisi P et al (2022) Optical remote sensing image understanding with weak supervision: concepts, methods, and perspectives. IEEE Trans Geosci Remote Sens 10(2):250\u2013269. https:\/\/doi.org\/10.1109\/MGRS.2022.3161377","journal-title":"IEEE Trans Geosci Remote Sens"},{"issue":"3","key":"10764_CR280","doi-asserted-by":"publisher","first-page":"401","DOI":"10.1109\/LGRS.2019.2922326","volume":"17","author":"C Zhang","year":"2020","unstructured":"Zhang C, Yang X, Tang Y et al (2020) Learning to generate radar image sequences using two-stage generative adversarial networks. IEEE Geosci Remote Sens Lett 17(3):401\u2013405. https:\/\/doi.org\/10.1109\/LGRS.2019.2922326","journal-title":"IEEE Geosci Remote Sens Lett"},{"key":"10764_CR281","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1038\/s41467-019-09279-7","volume":"10","author":"H Zhang","year":"2019","unstructured":"Zhang H, Wang F, Myhill R et al (2019) Slab morphology and deformation beneath IZU-Bonin. Nat Commun 10:1\u20138. https:\/\/doi.org\/10.1038\/s41467-019-09279-7","journal-title":"Nat Commun"},{"issue":"8","key":"10764_CR282","doi-asserted-by":"publisher","first-page":"4274","DOI":"10.1109\/TGRS.2018.2810208","volume":"56","author":"Q Zhang","year":"2018","unstructured":"Zhang Q, Yuan Q, Zeng C et al (2018) Missing data reconstruction in remote sensing image with a unified spatial-temporal-spectral deep convolutional neural network. IEEE Trans Geosci Remote Sens 56(8):4274\u20134288. https:\/\/doi.org\/10.1109\/TGRS.2018.2810208","journal-title":"IEEE Trans Geosci Remote Sens"},{"key":"10764_CR283","doi-asserted-by":"publisher","DOI":"10.1016\/j.engstruct.2020.110704","volume":"215","author":"R Zhang","year":"2020","unstructured":"Zhang R, Liu Y, Sun H (2020) Physics-guided convolutional neural network (phycnn) for data-driven seismic response modeling. Eng Struct 215:110704. https:\/\/doi.org\/10.1016\/j.engstruct.2020.110704","journal-title":"Eng Struct"},{"key":"10764_CR284","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1016\/j.earscirev.2021.103507","volume":"214","author":"D Zhao","year":"2021","unstructured":"Zhao D (2021) Seismic imaging of northwest pacific and east Asia: New insight into volcanism, seismogenesis and geodynamics. Earth Sci Rev 214:1\u201322. https:\/\/doi.org\/10.1016\/j.earscirev.2021.103507","journal-title":"Earth Sci Rev"},{"key":"10764_CR285","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1109\/TGRS.2023.3239592","volume":"61","author":"M Zhao","year":"2023","unstructured":"Zhao M, Olsen P, Chandra R (2023) Seeing through clouds in satellite images. IEEE Trans Geosci Remote Sens 61:1\u201316. https:\/\/doi.org\/10.1109\/TGRS.2023.3239592","journal-title":"IEEE Trans Geosci Remote Sens"},{"issue":"4","key":"10764_CR286","doi-asserted-by":"publisher","first-page":"698","DOI":"10.1029\/2018RG000616","volume":"56","author":"F Zheng","year":"2018","unstructured":"Zheng F, Tao R, Maier H et al (2018) Crowdsourcing methods for data collection in geophysics: state of the art, issues, and future directions. Rev Geophys 56(4):698\u2013740. https:\/\/doi.org\/10.1029\/2018RG000616","journal-title":"Rev Geophys"},{"key":"10764_CR287","doi-asserted-by":"publisher","first-page":"1755","DOI":"10.5194\/nhess-23-1755-2023","volume":"23","author":"C Zhong","year":"2023","unstructured":"Zhong C, Cheng S, Kasoar M et al (2023) Reduced-order digital twin and latent data assimilation for global wildfire prediction. Nat Hazards Earth Syst Sci 23:1755\u20131768. https:\/\/doi.org\/10.5194\/nhess-23-1755-2023","journal-title":"Nat Hazards Earth Syst Sci"},{"issue":"3","key":"10764_CR288","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1029\/2019JB018408","volume":"125","author":"Z Zhong","year":"2020","unstructured":"Zhong Z, Sun A, Wu X (2020) Inversion of time-lapse seismic reservoir monitoring data using cyclegan: a deep learning-based approach for estimating dynamic reservoir property changes. J Geophys Res Solid 125(3):1\u201323. https:\/\/doi.org\/10.1029\/2019JB018408","journal-title":"J Geophys Res Solid"},{"key":"10764_CR289","doi-asserted-by":"publisher","first-page":"3650","DOI":"10.3390\/rs14153650","volume":"14","author":"Y Zhou","year":"2022","unstructured":"Zhou Y, Wang H, Yang R et al (2022) A novel weakly supervised remote sensing landslide semantic segmentation method: combining cam and Cyclegan algorithms. Remote Sens 14:3650. https:\/\/doi.org\/10.3390\/rs14153650","journal-title":"Remote Sens"}],"container-title":["Artificial Intelligence Review"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s10462-024-10764-9.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s10462-024-10764-9\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s10462-024-10764-9.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,6,18]],"date-time":"2024-06-18T12:24:33Z","timestamp":1718713473000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s10462-024-10764-9"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,5,30]]},"references-count":289,"journal-issue":{"issue":"6","published-online":{"date-parts":[[2024,6]]}},"alternative-id":["10764"],"URL":"https:\/\/doi.org\/10.1007\/s10462-024-10764-9","relation":{},"ISSN":["1573-7462"],"issn-type":[{"value":"1573-7462","type":"electronic"}],"subject":[],"published":{"date-parts":[[2024,5,30]]},"assertion":[{"value":"18 April 2024","order":1,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"30 May 2024","order":2,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}},{"order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Declarations"}},{"value":"The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.","order":2,"name":"Ethics","group":{"name":"EthicsHeading","label":"Competing interests"}}],"article-number":"160"}}