iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://api.crossref.org/works/10.1007/S10444-024-10195-8
{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,22]],"date-time":"2024-10-22T04:11:48Z","timestamp":1729570308001,"version":"3.28.0"},"reference-count":62,"publisher":"Springer Science and Business Media LLC","issue":"5","license":[{"start":{"date-parts":[[2024,9,11]],"date-time":"2024-09-11T00:00:00Z","timestamp":1726012800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0"},{"start":{"date-parts":[[2024,9,11]],"date-time":"2024-09-11T00:00:00Z","timestamp":1726012800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0"}],"funder":[{"DOI":"10.13039\/501100001659","name":"Deutsche Forschungsgemeinschaft","doi-asserted-by":"publisher","award":["314733389","314733389","EXC 2075 - 390740016","EXC 2075 - 390740016"],"id":[{"id":"10.13039\/501100001659","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Adv Comput Math"],"published-print":{"date-parts":[[2024,10]]},"abstract":"Abstract<\/jats:title>Projection-based model order reduction of dynamical systems usually introduces an error between the high-fidelity model and its counterpart of lower dimension. This unknown error can be bounded by residual-based methods, which are typically known to be highly pessimistic in the sense of largely overestimating the true error. This work applies two improved error bounding techniques, namely (a)\u00a0a hierarchical error bound<\/jats:italic> and (b)\u00a0an error bound based on an auxiliary linear problem<\/jats:italic>, to the case of port-Hamiltonian systems. The approaches rely on a secondary approximation of (a) the dynamical system and (b) the error system. In this paper, these methods are adapted to port-Hamiltonian systems. The mathematical relationship between the two methods is discussed both theoretically and numerically. The effectiveness of the described methods is demonstrated using a challenging three-dimensional port-Hamiltonian model of a classical guitar with fluid\u2013structure interaction.<\/jats:p>","DOI":"10.1007\/s10444-024-10195-8","type":"journal-article","created":{"date-parts":[[2024,9,11]],"date-time":"2024-09-11T06:02:27Z","timestamp":1726034547000},"update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Improved a posteriori error bounds for reduced port-Hamiltonian systems"],"prefix":"10.1007","volume":"50","author":[{"given":"Johannes","family":"Rettberg","sequence":"first","affiliation":[]},{"given":"Dominik","family":"Wittwar","sequence":"additional","affiliation":[]},{"given":"Patrick","family":"Buchfink","sequence":"additional","affiliation":[]},{"given":"Robin","family":"Herkert","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-2850-1440","authenticated-orcid":false,"given":"J\u00f6rg","family":"Fehr","sequence":"additional","affiliation":[]},{"given":"Bernard","family":"Haasdonk","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2024,9,11]]},"reference":[{"key":"10195_CR1","doi-asserted-by":"publisher","first-page":"395","DOI":"10.1017\/S0962492922000083","volume":"32","author":"V Mehrmann","year":"2023","unstructured":"Mehrmann, V., Unger, B.: Control of port-Hamiltonian differential-algebraic systems and applications. Acta Numer 32, 395\u2013515 (2023). https:\/\/doi.org\/10.1017\/S0962492922000083","journal-title":"Acta Numer"},{"key":"10195_CR2","doi-asserted-by":"publisher","unstructured":"Duindam, V., Macchelli, A., Stramigioli, S., Bruyninckx, H.: Modeling and control of complex physical systems - the port-Hamiltonian approach., 1st edn. Springer, Berlin Heidelberg (2009). https:\/\/doi.org\/10.1007\/978-3-642-03196-0","DOI":"10.1007\/978-3-642-03196-0"},{"key":"10195_CR3","doi-asserted-by":"publisher","DOI":"10.1080\/13873954.2023.2173238","author":"J Rettberg","year":"2023","unstructured":"Rettberg, J., Wittwar, D., Buchfink, P., Brauchler, A., Ziegler, P., Fehr, J., Haasdonk, B.: Port-Hamiltonian fluid-structure interaction modeling and structure-preserving model order reduction of a classical guitar. Math. Comput. Model. Dyn. Syst. (2023). https:\/\/doi.org\/10.1080\/13873954.2023.2173238","journal-title":"Math. Comput. Model. Dyn. Syst."},{"key":"10195_CR4","unstructured":"Haasdonk, B., Ohlberger, M.: Space-adaptive reduced basis simulation for time-dependent problems. In: MATHMOD, 6th Vienna International Conference on Mathematical Modelling, Vienna, Austria, pp. 718\u2013723 (2009). https:\/\/www.argesim.org\/fileadmin\/user_upload_argesim\/ARGESIM_Publications_OA\/MATHMOD_Publications_OA\/MATHMOD_2009_AR34_35\/full_papers\/184.pdf"},{"issue":"3","key":"10195_CR5","doi-asserted-by":"publisher","first-page":"1039","DOI":"10.1137\/22M1493318","volume":"45","author":"B Haasdonk","year":"2023","unstructured":"Haasdonk, B., Kleikamp, H., Ohlberger, M., Schindler, F., Wenzel, T.: A new certified hierarchical and adaptive RB-ML-ROM surrogate model for parametrized PDEs. SIAM J. Sci. Comput. 45(3), 1039\u20131065 (2023). https:\/\/doi.org\/10.1137\/22M1493318","journal-title":"SIAM J. Sci. Comput."},{"issue":"2","key":"10195_CR6","doi-asserted-by":"publisher","first-page":"145","DOI":"10.1080\/13873954.2010.514703","volume":"17","author":"B Haasdonk","year":"2011","unstructured":"Haasdonk, B., Ohlberger, M.: Efficient reduced models and a posteriori error estimation for parametrized dynamical systems by offline\/online decomposition. MCMDS 17(2), 145\u2013161 (2011). https:\/\/doi.org\/10.1080\/13873954.2010.514703","journal-title":"MCMDS"},{"issue":"5","key":"10195_CR7","doi-asserted-by":"publisher","first-page":"2191","DOI":"10.1007\/s10444-019-09675-z","volume":"45","author":"S Hain","year":"2019","unstructured":"Hain, S., Ohlberger, M., Radic, M., Urban, K.: A hierarchical a posteriori error estimator for the reduced basis method. Adv. Comput. Math. 45(5), 2191\u20132214 (2019). https:\/\/doi.org\/10.1007\/s10444-019-09675-z","journal-title":"Adv. Comput. Math."},{"issue":"2","key":"10195_CR8","doi-asserted-by":"publisher","first-page":"32","DOI":"10.1007\/s10444-020-09741-x","volume":"46","author":"A Schmidt","year":"2020","unstructured":"Schmidt, A., Wittwar, D., Haasdonk, B.: Rigorous and effective a-posteriori error bounds for nonlinear problems-application to RB methods. Adv. Comput. Math. 46(2), 32 (2020). https:\/\/doi.org\/10.1007\/s10444-020-09741-x","journal-title":"Adv. Comput. Math."},{"issue":"3","key":"10195_CR9","doi-asserted-by":"publisher","first-page":"1489","DOI":"10.1137\/18M1164275","volume":"39","author":"C Mehl","year":"2018","unstructured":"Mehl, C., Mehrmann, V., Wojtylak, M.: Linear algebra properties of dissipative Hamiltonian descriptor systems. SIAM J. Matrix Anal. Appl. 39(3), 1489\u20131519 (2018). https:\/\/doi.org\/10.1137\/18M1164275","journal-title":"SIAM J. Matrix Anal. Appl."},{"issue":"5","key":"10195_CR10","doi-asserted-by":"publisher","first-page":"321","DOI":"10.1007\/BF00276493","volume":"45","author":"JC Willems","year":"1972","unstructured":"Willems, J.C.: Dissipative dynamical systems part i: General theory. Arch. Ration. Mech. Anal. 45(5), 321\u2013351 (1972). https:\/\/doi.org\/10.1007\/BF00276493","journal-title":"Arch. Ration. Mech. Anal."},{"key":"10195_CR11","doi-asserted-by":"publisher","unstructured":"Cherifi, K., Gernandt, H., Hinsen, D.: The difference between port-Hamiltonian, passive and positive real descriptor systems. Mathematics of Control, Signals, and Systems (2023). https:\/\/doi.org\/10.1007\/s00498-023-00373-2","DOI":"10.1007\/s00498-023-00373-2"},{"key":"10195_CR12","doi-asserted-by":"publisher","first-page":"182","DOI":"10.1016\/j.automatica.2018.11.013","volume":"100","author":"CA Beattie","year":"2019","unstructured":"Beattie, C.A., Mehrmann, V., Van Dooren, P.: Robust port-Hamiltonian representations of passive systems. Automatica 100, 182\u2013186 (2019). https:\/\/doi.org\/10.1016\/j.automatica.2018.11.013","journal-title":"Automatica"},{"key":"10195_CR13","doi-asserted-by":"publisher","unstructured":"Hinrichsen, D., Pritchard, A.J.: Mathematical Systems Theory I. Springer, Berlin Heidelberg (2005). https:\/\/doi.org\/10.1007\/b137541","DOI":"10.1007\/b137541"},{"issue":"2\u20133","key":"10195_CR14","doi-asserted-by":"publisher","first-page":"173","DOI":"10.1561\/2600000002","volume":"1","author":"A van der Schaft","year":"2014","unstructured":"van der Schaft, A., Jeltsema, D.: Port-Hamiltonian systems theory: an introductory overview. Fndn Trends in Syst Contr 1(2\u20133), 173\u2013378 (2014). https:\/\/doi.org\/10.1561\/2600000002","journal-title":"Fndn Trends in Syst Contr"},{"issue":"2","key":"10195_CR15","doi-asserted-by":"publisher","first-page":"1022","DOI":"10.1137\/17M1137176","volume":"56","author":"N Gillis","year":"2018","unstructured":"Gillis, N., Sharma, P.: Finding the nearest positive-real system. SIAM J. Numer. Anal. 56(2), 1022\u20131047 (2018). https:\/\/doi.org\/10.1137\/17M1137176","journal-title":"SIAM J. Numer. Anal."},{"issue":"4","key":"10195_CR16","doi-asserted-by":"publisher","first-page":"1400","DOI":"10.1093\/imamci\/dnaa018","volume":"37","author":"R Rashad","year":"2020","unstructured":"Rashad, R., Califano, F., van der Schaft, A., Stramigioli, S.: Twenty years of distributed port-Hamiltonian systems: a literature review. IMA J. Math. Control. Inf. 37(4), 1400\u20131422 (2020). https:\/\/doi.org\/10.1093\/imamci\/dnaa018","journal-title":"IMA J. Math. Control. Inf."},{"key":"10195_CR17","doi-asserted-by":"publisher","unstructured":"Goyal, P., Pontes Duff, I., Benner, P.: Guaranteed stable quadratic models and their applications in SINDy and operator inference. arXiv Preprint (2023). https:\/\/doi.org\/10.48550\/arXiv.2308.13819","DOI":"10.48550\/arXiv.2308.13819"},{"key":"10195_CR18","doi-asserted-by":"publisher","first-page":"113","DOI":"10.1016\/j.automatica.2017.07.047","volume":"85","author":"N Gillis","year":"2017","unstructured":"Gillis, N., Sharma, P.: On computing the distance to stability for matrices using linear dissipative Hamiltonian systems. Automatica 85, 113\u2013121 (2017). https:\/\/doi.org\/10.1016\/j.automatica.2017.07.047","journal-title":"Automatica"},{"key":"10195_CR19","doi-asserted-by":"publisher","unstructured":"Gillis, N., Mehrmann, V., Sharma, P.: Computing the nearest stable matrix pairs. Numerical Linear Algebra with Applications 25(5), 2153 (2018). https:\/\/doi.org\/10.1002\/nla.2153.e2153nla.2153","DOI":"10.1002\/nla.2153.e2153nla.2153"},{"issue":"4","key":"10195_CR20","doi-asserted-by":"publisher","first-page":"1625","DOI":"10.1137\/16M1067330","volume":"37","author":"C Mehl","year":"2016","unstructured":"Mehl, C., Mehrmann, V., Sharma, P.: Stability radii for linear Hamiltonian systems with dissipation under structure-preserving perturbations. SIAM J. Matrix Anal. Appl. 37(4), 1625\u20131654 (2016). https:\/\/doi.org\/10.1137\/16M1067330","journal-title":"SIAM J. Matrix Anal. Appl."},{"issue":"3","key":"10195_CR21","doi-asserted-by":"publisher","first-page":"811","DOI":"10.1007\/s10543-017-0654-0","volume":"57","author":"C Mehl","year":"2017","unstructured":"Mehl, C., Mehrmann, V., Sharma, P.: Stability radii for real linear Hamiltonian systems with perturbed dissipation. BIT Numer. Math. 57(3), 811\u2013843 (2017). https:\/\/doi.org\/10.1007\/s10543-017-0654-0","journal-title":"BIT Numer. Math."},{"key":"10195_CR22","unstructured":"Liljegren-Sailer, B.: On port-Hamiltonian modeling and structure-preserving model reduction. Doctoral thesis, Universit\u00e4t Trier (2020). https:\/\/nbn-resolving.org\/urn:nbn:de:hbz:385-1-14498"},{"key":"10195_CR23","doi-asserted-by":"publisher","unstructured":"Beattie, C., Gugercin, S., Mehrmann, V.: Structured Dynamical Systems. In: Beattie, C., Benner, P., Embree, M., Gugercin, S., Lefteriu, S. (eds.) Structure-preserving interpolatory model reduction for port-Hamiltonian differential-algebraic systems, pp. 235\u2013254. Springer, Cham (2022). https:\/\/doi.org\/10.1007\/978-3-030-95157-3_13","DOI":"10.1007\/978-3-030-95157-3_13"},{"issue":"9","key":"10195_CR24","doi-asserted-by":"publisher","first-page":"1963","DOI":"10.1016\/j.automatica.2012.05.052","volume":"48","author":"S Gugercin","year":"2012","unstructured":"Gugercin, S., Polyuga, R.V., Beattie, C., van der Schaft, A.: Structure-preserving tangential interpolation for model reduction of port-Hamiltonian systems. Automatica 48(9), 1963\u20131974 (2012). https:\/\/doi.org\/10.1016\/j.automatica.2012.05.052","journal-title":"Automatica"},{"key":"10195_CR25","doi-asserted-by":"publisher","DOI":"10.1016\/j.automatica.2022.110368","volume":"142","author":"T Breiten","year":"2022","unstructured":"Breiten, T., Unger, B.: Passivity preserving model reduction via spectral factorization. Automatica 142, 110368 (2022). https:\/\/doi.org\/10.1016\/j.automatica.2022.110368","journal-title":"Automatica"},{"issue":"4","key":"10195_CR26","doi-asserted-by":"publisher","first-page":"665","DOI":"10.1016\/j.automatica.2010.01.018","volume":"46","author":"RV Polyuga","year":"2010","unstructured":"Polyuga, R.V., van der Schaft, A.: Structure preserving model reduction of port-Hamiltonian systems by moment matching at infinity. Automatica 46(4), 665\u2013672 (2010). https:\/\/doi.org\/10.1016\/j.automatica.2010.01.018","journal-title":"Automatica"},{"issue":"8","key":"10195_CR27","doi-asserted-by":"publisher","first-page":"2424","DOI":"10.1016\/j.automatica.2013.05.006","volume":"49","author":"TC Ionescu","year":"2013","unstructured":"Ionescu, T.C., Astolfi, A.: Families of moment matching based, structure preserving approximations for linear port Hamiltonian systems. Automatica 49(8), 2424\u20132434 (2013). https:\/\/doi.org\/10.1016\/j.automatica.2013.05.006","journal-title":"Automatica"},{"issue":"1","key":"10195_CR28","doi-asserted-by":"publisher","first-page":"331","DOI":"10.1137\/17M1125303","volume":"40","author":"H Egger","year":"2018","unstructured":"Egger, H., Kugler, T., Liljegren-Sailer, B., Marheineke, N., Mehrmann, V.: On structure-preserving model reduction for damped wave propagation in transport networks. SIAM J. Sci. Comput. 40(1), 331\u2013365 (2018). https:\/\/doi.org\/10.1137\/17M1125303","journal-title":"SIAM J. Sci. Comput."},{"key":"10195_CR29","doi-asserted-by":"publisher","unstructured":"Moser, T., Lohmann, B.: A new Riemannian framework for efficient H2-optimal model reduction of port-Hamiltonian systems. In: 2020 59th IEEE Conference on Decision and Control (CDC), pp. 5043\u20135049 (2020). https:\/\/doi.org\/10.1109\/CDC42340.2020.9304134","DOI":"10.1109\/CDC42340.2020.9304134"},{"issue":"2","key":"10195_CR30","doi-asserted-by":"publisher","first-page":"502","DOI":"10.1137\/20M1380235","volume":"45","author":"P Schwerdtner","year":"2023","unstructured":"Schwerdtner, P., Voigt, M.: SOBMOR: structured optimization-based model order reduction. SIAM J. Sci. Comput. 45(2), 502\u2013529 (2023). https:\/\/doi.org\/10.1137\/20M1380235","journal-title":"SIAM J. Sci. Comput."},{"issue":"3","key":"10195_CR31","doi-asserted-by":"publisher","first-page":"412","DOI":"10.1016\/j.sysconle.2011.12.008","volume":"61","author":"RV Polyuga","year":"2012","unstructured":"Polyuga, R.V., van der Schaft, A.J.: Effort- and flow-constraint reduction methods for structure preserving model reduction of port-Hamiltonian systems. Syst. Contr. Lett. 61(3), 412\u2013421 (2012). https:\/\/doi.org\/10.1016\/j.sysconle.2011.12.008","journal-title":"Syst. Contr. Lett."},{"key":"10195_CR32","doi-asserted-by":"publisher","unstructured":"Hauschild, S.-A., Marheineke, N., Mehrmann, V.: Model reduction techniques for linear constant coefficient port-Hamiltonian differential-algebraic systems. Control and Cybernetics 48, 125\u2013152 (2019). https:\/\/doi.org\/10.48550\/arXiv.1901.10242","DOI":"10.48550\/arXiv.1901.10242"},{"issue":"12","key":"10195_CR33","doi-asserted-by":"publisher","first-page":"3659","DOI":"10.1016\/j.laa.2013.09.032","volume":"439","author":"C Guiver","year":"2013","unstructured":"Guiver, C., Opmeer, M.R.: Error bounds in the gap metric for dissipative balanced approximations. Linear Algebra Appl. 439(12), 3659\u20133698 (2013). https:\/\/doi.org\/10.1016\/j.laa.2013.09.032","journal-title":"Linear Algebra Appl."},{"key":"10195_CR34","doi-asserted-by":"publisher","first-page":"100","DOI":"10.1016\/j.camwa.2021.07.022","volume":"116","author":"T Breiten","year":"2022","unstructured":"Breiten, T., Morandin, R., Schulze, P.: Error bounds for port-Hamiltonian model and controller reduction based on system balancing. Comp. Math. Appl. 116, 100\u2013115 (2022). https:\/\/doi.org\/10.1016\/j.camwa.2021.07.022","journal-title":"Comp. Math. Appl."},{"issue":"1","key":"10195_CR35","doi-asserted-by":"publisher","first-page":"257","DOI":"10.1109\/TAC.2021.3138645","volume":"68","author":"P Borja","year":"2023","unstructured":"Borja, P., Scherpen, J.M.A., Fujimoto, K.: Extended balancing of continuous LTI systems: a structure-preserving approach. IEEE Trans. Autom. Control 68(1), 257\u2013271 (2023). https:\/\/doi.org\/10.1109\/TAC.2021.3138645","journal-title":"IEEE Trans. Autom. Control"},{"issue":"6","key":"10195_CR36","doi-asserted-by":"publisher","first-page":"4365","DOI":"10.1137\/18M1167887","volume":"56","author":"P Schulze","year":"2018","unstructured":"Schulze, P., Unger, B.: Model reduction for linear systems with low-rank switching. SIAM J. Control. Optim. 56(6), 4365\u20134384 (2018). https:\/\/doi.org\/10.1137\/18M1167887","journal-title":"SIAM J. Control. Optim."},{"key":"10195_CR37","doi-asserted-by":"publisher","unstructured":"Schulze, P.: Energy-based model reduction of transport-dominated phenomena. Doctoral thesis, Technische Universit\u00e4t Berlin (2023). https:\/\/doi.org\/10.14279\/depositonce-17843","DOI":"10.14279\/depositonce-17843"},{"key":"10195_CR38","doi-asserted-by":"publisher","unstructured":"Beattie, C., Gugercin, S.: Structure-preserving model reduction for nonlinear port-Hamiltonian systems. Proceed. IEEE Conf. Decision. Contr. 6564\u20136569 (2011). https:\/\/doi.org\/10.1109\/CDC.2011.6161504","DOI":"10.1109\/CDC.2011.6161504"},{"issue":"5","key":"10195_CR39","doi-asserted-by":"publisher","first-page":"837","DOI":"10.1137\/15M1055085","volume":"38","author":"S Chaturantabut","year":"2016","unstructured":"Chaturantabut, S., Beattie, C., Gugercin, S.: Structure-preserving model reduction for nonlinear port-Hamiltonian systems. SIAM J. Sci. Comput. 38(5), 837\u2013865 (2016). https:\/\/doi.org\/10.1137\/15M1055085","journal-title":"SIAM J. Sci. Comput."},{"issue":"4","key":"10195_CR40","doi-asserted-by":"publisher","first-page":"401","DOI":"10.3166\/EJC.16.401-406","volume":"16","author":"T Wolf","year":"2010","unstructured":"Wolf, T., Lohmann, B., Eid, R., Kotyczka, P.: Passivity and structure preserving order reduction of linear port-Hamiltonian systems using Krylov subspaces. Eur. J. Control. 16(4), 401\u2013406 (2010). https:\/\/doi.org\/10.3166\/EJC.16.401-406","journal-title":"Eur. J. Control."},{"key":"10195_CR41","doi-asserted-by":"publisher","unstructured":"Nguyen, N.-C., Veroy, K., Patera, A.T.: Certified real-time solution of parametrized partial differential equations. In: Yip, S. (ed.) Handbook of Materials Modeling, pp. 1529\u20131564. Springer, Dordrecht (2005). https:\/\/doi.org\/10.1007\/978-1-4020-3286-8_76","DOI":"10.1007\/978-1-4020-3286-8_76"},{"issue":"8\u20139","key":"10195_CR42","doi-asserted-by":"publisher","first-page":"773","DOI":"10.1002\/fld.867","volume":"47","author":"K Veroy","year":"2005","unstructured":"Veroy, K., Patera, A.T.: Certified real-time solution of the parametrized steady incompressible Navier-Stokes equations: rigorous reduced-basis a posteriori error bounds. Int. J. Numer. Methods Fluids 47(8\u20139), 773\u2013788 (2005). https:\/\/doi.org\/10.1002\/fld.867","journal-title":"Int. J. Numer. Methods Fluids"},{"key":"10195_CR43","doi-asserted-by":"publisher","unstructured":"Grepl, M.A., Patera, A.T.: A posteriori error bounds for reduced-basis approximations of parametrized parabolic partial differential equations. ESAIM: M2AN 39(1), 157\u2013181 (2005). https:\/\/doi.org\/10.1051\/m2an:2005006","DOI":"10.1051\/m2an:2005006"},{"issue":"07","key":"10195_CR44","doi-asserted-by":"publisher","first-page":"1415","DOI":"10.1142\/S0218202511005441","volume":"21","author":"DJ Knezevic","year":"2011","unstructured":"Knezevic, D.J., Nguyen, N.-C., Patera, A.T.: Reduced basis approximation and a posteriori error estimation for the parametrized unsteady Boussinesq equations. Math. Models Methods Appl. Sci. 21(07), 1415\u20131442 (2011). https:\/\/doi.org\/10.1142\/S0218202511005441","journal-title":"Math. Models Methods Appl. Sci."},{"key":"10195_CR45","doi-asserted-by":"publisher","unstructured":"Grepl, M.A., Maday, Y., Nguyen, N.-C., Patera, A.T.: Efficient reduced-basis treatment of nonaffine and nonlinear partial differential equations. ESAIM: M2AN 41(3), 575\u2013605 (2007). https:\/\/doi.org\/10.1051\/m2an:2007031","DOI":"10.1051\/m2an:2007031"},{"issue":"8","key":"10195_CR46","doi-asserted-by":"publisher","first-page":"201900186","DOI":"10.1002\/zamm.201900186","volume":"100","author":"D Grunert","year":"2020","unstructured":"Grunert, D., Fehr, J., Haasdonk, B.: Well-scaled, a-posteriori error estimation for model order reduction of large second-order mechanical systems. ZAMM - J. Appl. Math. Mech. 100(8), 201900186 (2020). https:\/\/doi.org\/10.1002\/zamm.201900186","journal-title":"ZAMM - J. Appl. Math. Mech."},{"issue":"2","key":"10195_CR47","doi-asserted-by":"publisher","first-page":"139","DOI":"10.1080\/10618562.2019.1686486","volume":"34","author":"S Glas","year":"2020","unstructured":"Glas, S., Patera, A.T., Urban, K.: A reduced basis method for the wave equation. Int. J. Comput. Fluid Dyn. 34(2), 139\u2013146 (2020). https:\/\/doi.org\/10.1080\/10618562.2019.1686486","journal-title":"Int. J. Comput. Fluid Dyn."},{"issue":"20","key":"10195_CR48","doi-asserted-by":"publisher","first-page":"289","DOI":"10.1016\/j.ifacol.2022.09.110","volume":"55","author":"N Stahl","year":"2022","unstructured":"Stahl, N., Liljegren-Sailer, B., Marheineke, N.: Certified reduced basis method for the damped wave equations on networks. IFAC-PapersOnLine 55(20), 289\u2013294 (2022). https:\/\/doi.org\/10.1016\/j.ifacol.2022.09.110","journal-title":"IFAC-PapersOnLine"},{"issue":"2","key":"10195_CR49","doi-asserted-by":"publisher","first-page":"103","DOI":"10.1080\/13873954.2018.1427116","volume":"24","author":"AC Antoulas","year":"2018","unstructured":"Antoulas, A.C., Benner, P., Feng, L.: Model reduction by iterative error system approximation. MCMDS 24(2), 103\u2013118 (2018). https:\/\/doi.org\/10.1080\/13873954.2018.1427116","journal-title":"MCMDS"},{"issue":"23","key":"10195_CR50","doi-asserted-by":"publisher","first-page":"5312","DOI":"10.1002\/nme.7348","volume":"124","author":"L Feng","year":"2023","unstructured":"Feng, L., Lombardi, L., Antonini, G., Benner, P.: Multi-fidelity error estimation accelerates greedy model reduction of complex dynamical systems. Int. J. Numer. Meth. Eng. 124(23), 5312\u20135333 (2023). https:\/\/doi.org\/10.1002\/nme.7348","journal-title":"Int. J. Numer. Meth. Eng."},{"issue":"1","key":"10195_CR51","doi-asserted-by":"publisher","first-page":"145","DOI":"10.1137\/15M1027553","volume":"37","author":"S G\u00fcttel","year":"2016","unstructured":"G\u00fcttel, S., Nakatsukasa, Y.: Scaled and squared subdiagonal Pad\u00e9 approximation for the matrix exponential. SIAM J. Matrix Anal. Appl. 37(1), 145\u2013170 (2016). https:\/\/doi.org\/10.1137\/15M1027553","journal-title":"SIAM J. Matrix Anal. Appl."},{"key":"10195_CR52","doi-asserted-by":"publisher","unstructured":"S\u00f6derlind, G.: The logarithmic norm. history and modern theory. BIT Numerical Mathematics 46(3), 631\u2013652 (2006). https:\/\/doi.org\/10.1007\/s10543-006-0069-9","DOI":"10.1007\/s10543-006-0069-9"},{"key":"10195_CR53","doi-asserted-by":"publisher","unstructured":"Desoer, C.A., Vidyasagar, M.: Feedback Systems. Society for Industrial and Applied Mathematics, Philadelphia (2009). https:\/\/doi.org\/10.1137\/1.9780898719055","DOI":"10.1137\/1.9780898719055"},{"key":"10195_CR54","doi-asserted-by":"publisher","unstructured":"Wittwar, D.: Approximation with matrix-valued kernels and highly effective error estimators for reduced basis approximations. Dissertation. University library Stuttgart, Stuttgart (2022). https:\/\/doi.org\/10.18419\/opus-12526","DOI":"10.18419\/opus-12526"},{"key":"10195_CR55","doi-asserted-by":"publisher","unstructured":"Hackbusch, W.: Hierarchical matrices: algorithms and analysis. Springer, Berlin Heidelberg (2015). https:\/\/doi.org\/10.1007\/978-3-662-47324-5","DOI":"10.1007\/978-3-662-47324-5"},{"issue":"8","key":"10195_CR56","doi-asserted-by":"publisher","first-page":"748","DOI":"10.1080\/00207170410001713448","volume":"77","author":"S Gugercin","year":"2004","unstructured":"Gugercin, S., Antoulas, A.C.: A survey of model reduction by balanced truncation and some new results. Int. J. Control 77(8), 748\u2013766 (2004). https:\/\/doi.org\/10.1080\/00207170410001713448","journal-title":"Int. J. Control"},{"key":"10195_CR57","doi-asserted-by":"publisher","unstructured":"Rettberg, J., Wittwar, D., Buchfink, P., Brauchler, A., Ziegler, P., Fehr, J., Haasdonk, B.: Replication data for: port-Hamiltonian fluid-structure interaction modeling and structure-preserving model order reduction of a classical guitar. DaRUS (2023). https:\/\/doi.org\/10.18419\/darus-3248","DOI":"10.18419\/darus-3248"},{"key":"10195_CR58","doi-asserted-by":"publisher","unstructured":"Rettberg, J., Wittwar, D., Herkert, R.: Softwarepackage CCMOR2. DaRUS (2023). https:\/\/doi.org\/10.18419\/darus-3839","DOI":"10.18419\/darus-3839"},{"issue":"1","key":"10195_CR59","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1137\/140978922","volume":"38","author":"L Peng","year":"2016","unstructured":"Peng, L., Mohseni, K.: Symplectic model reduction of Hamiltonian systems. SIAM J. Sci. Comput. 38(1), 1\u201327 (2016). https:\/\/doi.org\/10.1137\/140978922","journal-title":"SIAM J. Sci. Comput."},{"key":"10195_CR60","doi-asserted-by":"publisher","unstructured":"Buchfink, P., Bhatt, A., Haasdonk, B.: Symplectic model order reduction with non-orthonormal bases. Math. Comput. Appl. 24(2) (2019). https:\/\/doi.org\/10.3390\/mca24020043","DOI":"10.3390\/mca24020043"},{"issue":"11","key":"10195_CR61","doi-asserted-by":"publisher","first-page":"4762","DOI":"10.1109\/TMTT.2023.3288642","volume":"71","author":"S Chellappa","year":"2023","unstructured":"Chellappa, S., Feng, L., de la Rubia, V., Benner, P.: Inf-sup-constant-free state error estimator for model order reduction of parametric systems in electromagnetics. IEEE Trans. Microw. Theory Tech. 71(11), 4762\u20134777 (2023). https:\/\/doi.org\/10.1109\/TMTT.2023.3288642","journal-title":"IEEE Trans. Microw. Theory Tech."},{"key":"10195_CR62","unstructured":"Buchfink, P., Haasdonk, B., Rave, S.: PSD-Greedy basis generation for structure-preserving model order reduction of Hamiltonian systems. In: Frolkovi\u010d, P., Mikula, K., \u0160ev\u010dovi\u010d, D. (eds.) Proceedings of the Conference Algoritmy 2020, pp. 151\u2013160. Vydavate\u013estvo SPEKTRUM, Vysoke Tatry, Podbanske (2020). http:\/\/www.iam.fmph.uniba.sk\/amuc\/ojs\/index.php\/algoritmy\/article\/view\/1577\/829"}],"container-title":["Advances in Computational Mathematics"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s10444-024-10195-8.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s10444-024-10195-8\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s10444-024-10195-8.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,10,21]],"date-time":"2024-10-21T11:15:40Z","timestamp":1729509340000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s10444-024-10195-8"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,9,11]]},"references-count":62,"journal-issue":{"issue":"5","published-print":{"date-parts":[[2024,10]]}},"alternative-id":["10195"],"URL":"https:\/\/doi.org\/10.1007\/s10444-024-10195-8","relation":{},"ISSN":["1019-7168","1572-9044"],"issn-type":[{"type":"print","value":"1019-7168"},{"type":"electronic","value":"1572-9044"}],"subject":[],"published":{"date-parts":[[2024,9,11]]},"assertion":[{"value":"31 March 2023","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"26 August 2024","order":2,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"11 September 2024","order":3,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}},{"order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Declarations"}},{"value":"The research does not involve human participants or animals.","order":2,"name":"Ethics","group":{"name":"EthicsHeading","label":"Ethics approval"}},{"value":"The authors declare no competing interests.","order":3,"name":"Ethics","group":{"name":"EthicsHeading","label":"Conflict of interest"}}],"article-number":"100"}}