iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://api.crossref.org/works/10.1007/S10207-024-00833-Z
{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,11,19]],"date-time":"2024-11-19T19:09:24Z","timestamp":1732043364716},"reference-count":47,"publisher":"Springer Science and Business Media LLC","issue":"3","license":[{"start":{"date-parts":[[2024,3,19]],"date-time":"2024-03-19T00:00:00Z","timestamp":1710806400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0"},{"start":{"date-parts":[[2024,3,19]],"date-time":"2024-03-19T00:00:00Z","timestamp":1710806400000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0"}],"funder":[{"DOI":"10.13039\/501100001778","name":"Deakin University","doi-asserted-by":"crossref","id":[{"id":"10.13039\/501100001778","id-type":"DOI","asserted-by":"crossref"}]}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Int. J. Inf. Secur."],"published-print":{"date-parts":[[2024,6]]},"abstract":"Abstract<\/jats:title>In the domain of cyber-physical systems, wireless sensor networks (WSNs) play a pivotal role as infrastructures, encompassing both stationary and mobile sensors. These sensors self-organize and establish multi-hop connections for communication, collectively sensing, gathering, processing, and transmitting data about their surroundings. Despite their significance, WSNs face rapid and detrimental attacks that can disrupt functionality. Existing intrusion detection methods for WSNs encounter challenges such as low detection rates, computational overhead, and false alarms. These issues stem from sensor node resource constraints, data redundancy, and high correlation within the network. To address these challenges, we propose an innovative intrusion detection approach that integrates machine learning (ML) techniques with the Synthetic Minority Oversampling Technique Tomek Link (SMOTE-TomekLink) algorithm. This blend synthesizes minority instances and eliminates Tomek links, resulting in a balanced dataset that significantly enhances detection accuracy in WSNs. Additionally, we incorporate feature scaling through standardization to render input features consistent and scalable, facilitating more precise training and detection. To counteract imbalanced WSN datasets, we employ the SMOTE-Tomek resampling technique, mitigating overfitting and underfitting issues. Our comprehensive evaluation, using the wireless sensor network dataset (WSN-DS) containing 374,661 records, identifies the optimal model for intrusion detection in WSNs. The standout outcome of our research is the remarkable performance of our model. In binary classification scenarios, it achieves an accuracy rate of 99.78%, and in multiclass classification scenarios, it attains an exceptional accuracy rate of 99.92%. These findings underscore the efficiency and superiority of our proposal in the context of WSN intrusion detection, showcasing its effectiveness in detecting and mitigating intrusions in WSNs.<\/jats:p>","DOI":"10.1007\/s10207-024-00833-z","type":"journal-article","created":{"date-parts":[[2024,3,19]],"date-time":"2024-03-19T15:01:44Z","timestamp":1710860504000},"page":"2139-2158","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":7,"title":["MLSTL-WSN: machine learning-based intrusion detection using SMOTETomek in WSNs"],"prefix":"10.1007","volume":"23","author":[{"given":"Md. Alamin","family":"Talukder","sequence":"first","affiliation":[]},{"given":"Selina","family":"Sharmin","sequence":"additional","affiliation":[]},{"given":"Md Ashraf","family":"Uddin","sequence":"additional","affiliation":[]},{"given":"Md Manowarul","family":"Islam","sequence":"additional","affiliation":[]},{"given":"Sunil","family":"Aryal","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2024,3,19]]},"reference":[{"issue":"1","key":"833_CR1","doi-asserted-by":"publisher","first-page":"2246703","DOI":"10.1080\/09540091.2023.2246703","volume":"35","author":"GG Gebremariam","year":"2023","unstructured":"Gebremariam, G.G., Panda, J., Indu, S.: Design of advanced intrusion detection systems based on hybrid machine learning techniques in hierarchically wireless sensor networks. Connect. Sci. 35(1), 2246703 (2023)","journal-title":"Connect. Sci."},{"issue":"16","key":"833_CR2","doi-asserted-by":"publisher","first-page":"7194","DOI":"10.3390\/s23167194","volume":"23","author":"R Chataut","year":"2023","unstructured":"Chataut, R., Phoummalayvane, A., Akl, R.: Unleashing the power of IoT: a comprehensive review of IoT applications and future prospects in healthcare agriculture, smart homes, smart cities, and industry 4.0. Sensors 23(16), 7194 (2023)","journal-title":"Sensors"},{"key":"833_CR3","doi-asserted-by":"crossref","unstructured":"Talukder, M.A., Islam, M.M., Uddin, M.A., Hasan, K.F., Sharmin, S., Alyami, S.A., Moni, M.A.: Machine learning-based network intrusion detection for big and imbalanced data using oversampling, stacking feature embedding and feature extraction. J. Big Data (2024). arXiv: 2401.12262","DOI":"10.1186\/s40537-024-00886-w"},{"issue":"2","key":"833_CR4","first-page":"44","volume":"2","author":"MM Yakubu","year":"2023","unstructured":"Yakubu, M.M., Maiwada, U.D.: Resource limitations for wireless sensor networks to establish a comprehensive security system in the 5g network. UMYU Sci. 2(2), 44\u201352 (2023)","journal-title":"UMYU Sci."},{"issue":"2","key":"833_CR5","doi-asserted-by":"publisher","first-page":"32","DOI":"10.26634\/jwcn.11.2.19780","volume":"11","author":"A.D Nimbalkar","year":"2023","unstructured":"Nimbalkar, A..D., Azmat, A., Patil, Y.: Security issues in wireless sensor networks. i-Manager\u2019s J. Wirel. Commun. Netw. 11(2), 32 (2023)","journal-title":"i-Manager\u2019s J. Wirel. Commun. Netw."},{"key":"833_CR6","doi-asserted-by":"publisher","DOI":"10.1016\/j.cose.2022.103014","volume":"125","author":"R Alghamdi","year":"2023","unstructured":"Alghamdi, R., Bellaiche, M.: A cascaded federated deep learning based framework for detecting wormhole attacks in IoT networks. Comput. Secur. 125, 103014 (2023)","journal-title":"Comput. Secur."},{"key":"833_CR7","first-page":"1","volume":"26","author":"A Heidari","year":"2022","unstructured":"Heidari, A., Jabraeil Jamali, M.A.: Internet of things intrusion detection systems: a comprehensive review and future directions. Clust. Comput. 26, 1\u201328 (2022)","journal-title":"Clust. Comput."},{"issue":"2","key":"833_CR8","first-page":"40287","volume":"76","author":"A Sezgin","year":"2023","unstructured":"Sezgin, A., Boyac\u0131, A.: Aid4i: An intrusion detection framework for industrial internet of things using automated machine learning. Comput. Mater. Contin. 76(2), 40287 (2023)","journal-title":"Comput. Mater. Contin."},{"key":"833_CR9","volume":"72","author":"MA Talukder","year":"2023","unstructured":"Talukder, M.A., Hasan, K.F., Islam, M.M., Uddin, M.A., Akhter, A., Yousuf, M.A., Alharbi, F., Moni, M.A.: A dependable hybrid machine learning model for network intrusion detection. J. Inf. Secur. Appl. 72, 103405 (2023)","journal-title":"J. Inf. Secur. Appl."},{"issue":"2","key":"833_CR10","doi-asserted-by":"publisher","first-page":"3399","DOI":"10.32604\/cmc.2022.020173","volume":"70","author":"T Ghazal","year":"2022","unstructured":"Ghazal, T.: Data fusion-based machine learning architecture for intrusion detection. Comput. Mater. Continua 70(2), 3399\u20133413 (2022)","journal-title":"Comput. Mater. Continua"},{"key":"833_CR11","doi-asserted-by":"publisher","DOI":"10.1016\/j.eswa.2022.117695","volume":"205","author":"MA Talukder","year":"2022","unstructured":"Talukder, M.A., Islam, M.M., Uddin, M.A., Akhter, A., Hasan, K.F., Moni, M.A.: Machine learning-based lung and colon cancer detection using deep feature extraction and ensemble learning. Expert Syst. Appl. 205, 117695 (2022)","journal-title":"Expert Syst. Appl."},{"issue":"5","key":"833_CR12","doi-asserted-by":"publisher","first-page":"2487","DOI":"10.3390\/en16052487","volume":"16","author":"S Sharmin","year":"2023","unstructured":"Sharmin, S., Ahmedy, I., Md Noor, R.: An energy-efficient data aggregation clustering algorithm for wireless sensor networks using hybrid PSO. Energies 16(5), 2487 (2023)","journal-title":"Energies"},{"issue":"1","key":"833_CR13","doi-asserted-by":"publisher","first-page":"203","DOI":"10.3390\/s19010203","volume":"19","author":"X Tan","year":"2019","unstructured":"Tan, X., Su, S., Huang, Z., Guo, X., Zuo, Z., Sun, X., Li, L.: Wireless sensor networks intrusion detection based on smote and the random forest algorithm. Sensors 19(1), 203 (2019)","journal-title":"Sensors"},{"key":"833_CR14","doi-asserted-by":"publisher","first-page":"012021","DOI":"10.1088\/1742-6596\/1743\/1\/012021","volume":"1743","author":"S Ifzarne","year":"2021","unstructured":"Ifzarne, S., Tabbaa, H., Hafidi, I., Lamghari, N.: Anomaly detection using machine learning techniques in wireless sensor networks. J. Phys. Conf. Ser. 1743, 012021 (2021). (IOP Publishing)","journal-title":"J. Phys. Conf. Ser."},{"issue":"4","key":"833_CR15","first-page":"281","volume":"12","author":"NM Alruhaily","year":"2021","unstructured":"Alruhaily, N.M., Ibrahim, D.M.: A multi-layer machine learning-based intrusion detection system for wireless sensor networks. Int. J. Adv. Comput. Sci. Appl. 12(4), 281\u2013288 (2021)","journal-title":"Int. J. Adv. Comput. Sci. Appl."},{"issue":"03","key":"833_CR16","doi-asserted-by":"publisher","first-page":"2050018","DOI":"10.1142\/S1469026820500182","volume":"19","author":"N Singh","year":"2020","unstructured":"Singh, N., Virmani, D., Gao, X.-Z.: A fuzzy logic-based method to avert intrusions in wireless sensor networks using WSN-DS dataset. Int. J. Comput. Intell. Appl. 19(03), 2050018 (2020)","journal-title":"Int. J. Comput. Intell. Appl."},{"issue":"8938","key":"833_CR17","first-page":"8938","volume":"2252","author":"P Chandre","year":"2022","unstructured":"Chandre, P., Mahalle, P., Shinde, G.: Intrusion prevention system using convolutional neural network for wireless sensor network. Int. J. Artif. Intell. ISSN 2252(8938), 8938 (2022)","journal-title":"Int. J. Artif. Intell. ISSN"},{"key":"833_CR18","doi-asserted-by":"crossref","unstructured":"Putrada, A.G., Alamsyah, N., Pane, S.F., Fauzan, M.N.: Xgboost for ids on WSN cyber attacks with imbalanced data. In: 2022 International Symposium on Electronics and Smart Devices (ISESD), pp. 1\u2013 7. IEEE (2022)","DOI":"10.1109\/ISESD56103.2022.9980630"},{"key":"833_CR19","doi-asserted-by":"publisher","DOI":"10.1016\/j.comnet.2020.107315","volume":"177","author":"H Zhang","year":"2020","unstructured":"Zhang, H., Huang, L., Wu, C.Q., Li, Z.: An effective convolutional neural network based on smote and gaussian mixture model for intrusion detection in imbalanced dataset. Comput. Netw. 177, 107315 (2020)","journal-title":"Comput. Netw."},{"key":"833_CR20","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1007\/s10207-023-00684-0","volume":"22","author":"S Mohammadi","year":"2023","unstructured":"Mohammadi, S., Babagoli, M.: A novel hybrid hunger games algorithm for intrusion detection systems based on nonlinear regression modeling. Int. J. Inf. Secur. 22, 1\u201319 (2023)","journal-title":"Int. J. Inf. Secur."},{"issue":"4","key":"833_CR21","doi-asserted-by":"publisher","first-page":"887","DOI":"10.3390\/sym15040887","volume":"15","author":"W Chandra","year":"2023","unstructured":"Chandra, W., Suprihatin, B., Resti, Y.: Median-KNN Regressor\u2013SMOTE\u2013Tomek links for handling missing and imbalanced data in air quality prediction. Symmetry 15(4), 887 (2023)","journal-title":"Symmetry"},{"issue":"1","key":"833_CR22","first-page":"516","volume":"21","author":"MA Rezvi","year":"2021","unstructured":"Rezvi, M.A., Moontaha, S., Trisha, K.A., Cynthia, S.T., Ripon, S.: Data mining approach to analyzing intrusion detection of wireless sensor network. Indones. J. Electric. Eng. Comput. Sci 21(1), 516\u2013523 (2021)","journal-title":"Indones. J. Electric. Eng. Comput. Sci"},{"issue":"4","key":"833_CR23","first-page":"23","volume":"52","author":"D Meng","year":"2022","unstructured":"Meng, D., Dai, H., Sun, Q., Xu, Y., Shi, T.: Novel wireless sensor network intrusion detection method based on lightGBM model. IAENG Int. J. Appl. Math. 52(4), 23 (2022)","journal-title":"IAENG Int. J. Appl. Math."},{"key":"833_CR24","doi-asserted-by":"publisher","first-page":"92931","DOI":"10.1109\/ACCESS.2022.3202807","volume":"10","author":"M Dener","year":"2022","unstructured":"Dener, M., Al, S., Orman, A.: STLGBM-DDS: an efficient data balanced dos detection system for wireless sensor networks on big data environment. IEEE Access 10, 92931\u201392945 (2022)","journal-title":"IEEE Access"},{"issue":"16","key":"833_CR25","doi-asserted-by":"publisher","first-page":"12553","DOI":"10.1007\/s00500-020-04695-0","volume":"24","author":"SA Elsaid","year":"2020","unstructured":"Elsaid, S.A., Albatati, N.S.: An optimized collaborative intrusion detection system for wireless sensor networks. Soft Comput. 24(16), 12553\u201312567 (2020)","journal-title":"Soft Comput."},{"key":"833_CR26","doi-asserted-by":"crossref","unstructured":"Jiang, S., Zhao, J., Xu, X.: SLGBM: an intrusion detection mechanism for wireless sensor networks in smart environments. IEEE Access 8, 169548\u2013169558 (2020)","DOI":"10.1109\/ACCESS.2020.3024219"},{"key":"833_CR27","doi-asserted-by":"publisher","DOI":"10.1016\/j.adhoc.2022.102930","volume":"134","author":"IA Khan","year":"2022","unstructured":"Khan, I.A., Keshk, M., Pi, D., Khan, N., Hussain, Y., Soliman, H.: Enhancing IIoT networks protection: a robust security model for attack detection in internet industrial control systems. Ad Hoc Netw. 134, 102930 (2022)","journal-title":"Ad Hoc Netw."},{"key":"833_CR28","doi-asserted-by":"publisher","first-page":"8467","DOI":"10.1109\/JIOT.2022.3200048","volume":"10","author":"IA Khan","year":"2022","unstructured":"Khan, I.A., Pi, D., Abbas, M.Z., Zia, U., Hussain, Y., Soliman, H.: Federated-SRUs: a federated simple recurrent units-based ids for accurate detection of cyber attacks against IoT-augmented industrial control systems. IEEE Internet Things J. 10, 8467 (2022)","journal-title":"IEEE Internet Things J."},{"issue":"13","key":"833_CR29","doi-asserted-by":"publisher","first-page":"11604","DOI":"10.1109\/JIOT.2021.3130156","volume":"9","author":"IA Khan","year":"2021","unstructured":"Khan, I.A., Moustafa, N., Pi, D., Sallam, K.M., Zomaya, A.Y., Li, B.: A new explainable deep learning framework for cyber threat discovery in industrial IoT networks. IEEE Internet Things J. 9(13), 11604\u201311613 (2021)","journal-title":"IEEE Internet Things J."},{"key":"833_CR30","doi-asserted-by":"publisher","DOI":"10.1016\/j.inffus.2023.102002","volume":"101","author":"IA Khan","year":"2024","unstructured":"Khan, I.A., Razzak, I., Pi, D., Khan, N., Hussain, Y., Li, B., Kousar, T.: Fed-inforce-fusion: a federated reinforcement-based fusion model for security and privacy protection of IoMT networks against cyber-attacks. Inf. Fusion 101, 102002 (2024)","journal-title":"Inf. Fusion"},{"issue":"1","key":"833_CR31","doi-asserted-by":"publisher","first-page":"21","DOI":"10.1007\/s11277-023-10271-0","volume":"130","author":"C Ravindra","year":"2023","unstructured":"Ravindra, C., Kounte, M.R., Lakshmaiah, G.S., Prasad, V.N.: Etelmad: anomaly detection using enhanced transient extreme machine learning system in wireless sensor networks. Wirel. Pers. Commun. 130(1), 21\u201341 (2023)","journal-title":"Wirel. Pers. Commun."},{"key":"833_CR32","doi-asserted-by":"publisher","first-page":"131749","DOI":"10.1109\/ACCESS.2023.3335124","volume":"11","author":"FF Alruwaili","year":"2023","unstructured":"Alruwaili, F.F., Asiri, M.M., Alrayes, F.S., Aljameel, S.S., Salama, A.S., Hilal, A.M.: Red kite optimization algorithm with average ensemble model for intrusion detection for secure IoT. IEEE Access 11, 131749\u2013131758 (2023)","journal-title":"IEEE Access"},{"issue":"1","key":"833_CR33","doi-asserted-by":"publisher","first-page":"17","DOI":"10.1007\/s10922-023-09794-5","volume":"32","author":"ARA Moundounga","year":"2024","unstructured":"Moundounga, A.R.A., Satori, H.: Stochastic machine learning based attacks detection system in wireless sensor networks. J. Netw. Syst. Manag. 32(1), 17 (2024)","journal-title":"J. Netw. Syst. Manag."},{"key":"833_CR34","doi-asserted-by":"publisher","first-page":"4731953","DOI":"10.1155\/2016\/4731953","volume":"2016","author":"I Almomani","year":"2016","unstructured":"Almomani, I., Al-Kasasbeh, B., Al-Akhras, M., et al.: WSN-DS: a dataset for intrusion detection systems in wireless sensor networks. J. Sens. 2016, 4731953 (2016)","journal-title":"J. Sens."},{"key":"833_CR35","unstructured":"Group, T. et al.: The network simulator-ns 2. URL: http:\/\/www.isi.edu\/nsnam\/ns\/Page accessed as of May 30th (2006)"},{"issue":"1","key":"833_CR36","doi-asserted-by":"publisher","first-page":"10","DOI":"10.1145\/1656274.1656278","volume":"11","author":"M Hall","year":"2009","unstructured":"Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA data mining software: an update. ACM SIGKDD Explorations Newsletter 11(1), 10\u201318 (2009)","journal-title":"ACM SIGKDD Explorations Newsletter"},{"key":"833_CR37","first-page":"2533","volume":"11","author":"RR Bouckaert","year":"2010","unstructured":"Bouckaert, R.R., Frank, E., Hall, M.A., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: Weka\u2013experiences with a java open-source project. J. Mach. Learn. Res. 11, 2533\u20132541 (2010)","journal-title":"J. Mach. Learn. Res."},{"issue":"3","key":"833_CR38","first-page":"1174","volume":"7","author":"A Dey","year":"2016","unstructured":"Dey, A.: Machine learning algorithms: a review. Int. J. Comput. Sci. Inf. Technol. 7(3), 1174\u20131179 (2016)","journal-title":"Int. J. Comput. Sci. Inf. Technol."},{"key":"833_CR39","first-page":"229","volume":"2","author":"N Ahmed","year":"2021","unstructured":"Ahmed, N., Ahammed, R., Islam, M.M., Uddin, M.A., Akhter, A., Talukder, M.A., Paul, B.K.: Machine learning based diabetes prediction and development of smart web application. Int. J. Cogn. Comput. Eng. 2, 229\u2013241 (2021)","journal-title":"Int. J. Cogn. Comput. Eng."},{"key":"833_CR40","doi-asserted-by":"crossref","unstructured":"Alkhatib, K., Abualigah, S.: Predictive model for cutting customers migration from banks: based on machine learning classification algorithms. In: 2020 11th International Conference on Information and Communication Systems (ICICS), pp. 303\u2013 307. IEEE (2020)","DOI":"10.1109\/ICICS49469.2020.239544"},{"issue":"1","key":"833_CR41","doi-asserted-by":"publisher","first-page":"5","DOI":"10.1023\/A:1010933404324","volume":"45","author":"L Breiman","year":"2001","unstructured":"Breiman, L.: Random forests. Mach. Learn. 45(1), 5\u201332 (2001)","journal-title":"Mach. Learn."},{"issue":"1","key":"833_CR42","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1186\/s13638-021-01893-8","volume":"2021","author":"M Ahmad","year":"2021","unstructured":"Ahmad, M., Riaz, Q., Zeeshan, M., Tahir, H., Haider, S.A., Khan, M.S.: Intrusion detection in internet of things using supervised machine learning based on application and transport layer features using UNSW-NB15 data-set. EURASIP J. Wirel. Commun. Netw. 2021(1), 1\u201323 (2021)","journal-title":"EURASIP J. Wirel. Commun. Netw."},{"issue":"12","key":"833_CR43","doi-asserted-by":"publisher","first-page":"0189369","DOI":"10.1371\/journal.pone.0189369","volume":"12","author":"W Castro","year":"2017","unstructured":"Castro, W., Oblitas, J., Santa-Cruz, R., Avila-George, H.: Multilayer perceptron architecture optimization using parallel computing techniques. PloS ONE 12(12), 0189369 (2017)","journal-title":"PloS ONE"},{"issue":"1","key":"833_CR44","doi-asserted-by":"publisher","first-page":"26","DOI":"10.9781\/ijimai.2016.415","volume":"4","author":"H Ramchoun","year":"2016","unstructured":"Ramchoun, H., Idrissi, M.A.J., Ghanou, Y., Ettaouil, M.: Multilayer perceptron: architecture optimization and training. IJIMAI 4(1), 26\u201330 (2016)","journal-title":"IJIMAI"},{"key":"833_CR45","doi-asserted-by":"crossref","unstructured":"Kramer, O., Kramer, O.: K-nearest neighbors. Dimensionality reduction with unsupervised nearest neighbors, pp. 13\u201323 (2013)","DOI":"10.1007\/978-3-642-38652-7_2"},{"key":"833_CR46","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1007\/s10207-023-00661-7","volume":"22","author":"J Kaur","year":"2023","unstructured":"Kaur, J., Agrawal, A., Khan, R.A.: P2adf: a privacy-preserving attack detection framework in fog-IoT environment. Int. J. Inf. Secur. 22, 1\u201314 (2023)","journal-title":"Int. J. Inf. Secur."},{"key":"833_CR47","unstructured":"Abdullah, M.A., Alsolami, B.M., Alyahya, H.M., Alotibi, M.H.: Intrusion detection of dos attacks in wsns using classification techniuqes. J. Fundam. Appl. Sci. 10 (2018)"}],"container-title":["International Journal of Information Security"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s10207-024-00833-z.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s10207-024-00833-z\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s10207-024-00833-z.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,5,27]],"date-time":"2024-05-27T02:12:46Z","timestamp":1716775966000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s10207-024-00833-z"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,3,19]]},"references-count":47,"journal-issue":{"issue":"3","published-print":{"date-parts":[[2024,6]]}},"alternative-id":["833"],"URL":"http:\/\/dx.doi.org\/10.1007\/s10207-024-00833-z","relation":{},"ISSN":["1615-5262","1615-5270"],"issn-type":[{"value":"1615-5262","type":"print"},{"value":"1615-5270","type":"electronic"}],"subject":[],"published":{"date-parts":[[2024,3,19]]},"assertion":[{"value":"19 March 2024","order":1,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}},{"order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Declarations"}},{"value":"The authors have no conflicts of interest to declare that they are relevant to the content of this article.","order":2,"name":"Ethics","group":{"name":"EthicsHeading","label":"Conflict of interest"}}]}}