iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://api.crossref.org/works/10.1007/S00530-021-00824-3
{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,16]],"date-time":"2024-08-16T06:34:25Z","timestamp":1723790065540},"reference-count":36,"publisher":"Springer Science and Business Media LLC","issue":"4","license":[{"start":{"date-parts":[[2021,7,21]],"date-time":"2021-07-21T00:00:00Z","timestamp":1626825600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2021,7,21]],"date-time":"2021-07-21T00:00:00Z","timestamp":1626825600000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"funder":[{"name":"FCT\/MCTES through national funds","award":["309335\/2017-5."]}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Multimedia Systems"],"published-print":{"date-parts":[[2022,8]]},"DOI":"10.1007\/s00530-021-00824-3","type":"journal-article","created":{"date-parts":[[2021,7,21]],"date-time":"2021-07-21T03:33:01Z","timestamp":1626838381000},"page":"1251-1262","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":16,"title":["Applying deep learning-based multi-modal for detection of coronavirus"],"prefix":"10.1007","volume":"28","author":[{"given":"Geeta","family":"Rani","sequence":"first","affiliation":[]},{"given":"Meet Ganpatlal","family":"Oza","sequence":"additional","affiliation":[]},{"given":"Vijaypal Singh","family":"Dhaka","sequence":"additional","affiliation":[]},{"given":"Nitesh","family":"Pradhan","sequence":"additional","affiliation":[]},{"given":"Sahil","family":"Verma","sequence":"additional","affiliation":[]},{"given":"Joel J. P. C.","family":"Rodrigues","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2021,7,21]]},"reference":[{"key":"824_CR1","unstructured":"WHO (2020): Naming the coronavirus disease (COVID-19) and the virus that causes it.https:\/\/www.who.int\/emergencies\/diseases\/novel-coronavirus-2019\/technical-guidance\/naming-the-coronavirus-disease-(covid-2019)-and-the-virus-that-causes-it. Accessed 21 June 2020."},{"key":"824_CR2","unstructured":"WHO (2020) Covid-19 Coronavirus Pandemic: https:\/\/www.worldometers.info\/coronavirus\/. Accessed 9 Aug 2020"},{"issue":"6","key":"824_CR3","doi-asserted-by":"publisher","first-page":"1068","DOI":"10.1016\/j.apmr.2020.03.003","volume":"101","author":"GCH Koh","year":"2020","unstructured":"Koh, G.C.H., Hoenig, H.: How should the rehabilitation community prepare for 2019-nCoV. Arch. Phys. Med. Rehabil. 101(6), 1068\u20131071 (2020). https:\/\/doi.org\/10.1016\/j.apmr.2020.03.003","journal-title":"Arch. Phys. Med. Rehabil."},{"key":"824_CR4","unstructured":"World Health Organization (2020): Laboratory testing for Coronavirus disease 2019 (COVID-19) in suspected human cases. Interim guidance 2 March 2020.https:\/\/apps.who.int\/iris\/bitstream\/handle\/10665\/331329\/WHO-COVID-19-laboratory-2020.4-eng.pdf?sequence=1&isAllowed=y. Accessed 5 July 2020"},{"key":"824_CR5","doi-asserted-by":"publisher","first-page":"8961","DOI":"10.1016\/j.ejrad.2020.108961","volume":"126","author":"C Long","year":"2020","unstructured":"Long, C., Xu, H., Shen, Q., Zhang, X., Fan, B., Wang, C., Li, H.: Diagnosis of the Coronavirus disease (COVID-19): rRT-PCR or CT? Eur. J. Radiol. 126, 8961 (2020)","journal-title":"Eur. J. Radiol."},{"key":"824_CR6","doi-asserted-by":"publisher","unstructured":"Ushmani, A.: Machine learning pattern matching. https:\/\/doi.org\/10.13140\/RG.2.2.16276.96649 (2019)","DOI":"10.13140\/RG.2.2.16276.96649"},{"key":"824_CR7","doi-asserted-by":"publisher","first-page":"103670","DOI":"10.1016\/j.compbiomed.2020.103670","volume":"119","author":"B Robson","year":"2020","unstructured":"Robson, B.: Computers and viral diseases. Preliminary bioinformatics studies on the design of a synthetic vaccine and a preventative peptidomimetic antagonist against the SARS-CoV-2 (2019-nCoV, COVID-19) coronavirus. Comput. Biol. Med. 119, 103670 (2020)","journal-title":"Comput. Biol. Med."},{"key":"824_CR8","doi-asserted-by":"publisher","first-page":"109581","DOI":"10.1109\/ACCESS.2020.3001973","volume":"8","author":"MB Jamshidi","year":"2020","unstructured":"Jamshidi, M.B., et al.: Artificial intelligence and COVID-19: deep learning approaches for diagnosis and treatment. IEEE Access 8, 109581\u2013109595 (2020). https:\/\/doi.org\/10.1109\/ACCESS.2020.3001973","journal-title":"IEEE Access"},{"key":"824_CR9","doi-asserted-by":"crossref","unstructured":"Gu, J., Wang, Z., Kuen, J., Ma, L., Shahroudy, A., Shuai, B., Liu, T., Wang, X., Wang, G., Cai, J., Chen, T.: Recent advances in convolutional neural networks. Pattern Recognition. rXiv:1512.07108v6 (2018)","DOI":"10.1016\/j.patcog.2017.10.013"},{"key":"824_CR10","unstructured":"Ruder, S.: An overview of gradient descent optimization algorithms. arXiv preprint arXiv preprint arXiv:1609.04747 (2016)"},{"key":"824_CR11","doi-asserted-by":"publisher","DOI":"10.1007\/s00521-020-04857-z","author":"N Pradhan","year":"2019","unstructured":"Pradhan, N., Dhaka, V.S., Rani, G., Choudhary, H.: Transforming view of medical images using deep learning. Neural. Comput. & Appli. (2019). https:\/\/doi.org\/10.1007\/s00521-020-04857-z","journal-title":"Neural. Comput. & Appli."},{"issue":"7","key":"824_CR12","doi-asserted-by":"publisher","first-page":"1387","DOI":"10.3390\/w11071387","volume":"11","author":"Xuan-Hien Le","year":"2019","unstructured":"Le, H., Ho, H.V., Jung, S.: Application of long short-term memory (LSTM) neural network for flood forecasting. Water 11(7), 1387 (2019). https:\/\/doi.org\/10.3390\/w11071387","journal-title":"Water"},{"issue":"2","key":"824_CR13","doi-asserted-by":"publisher","first-page":"97","DOI":"10.1007\/s13337-020-00599-7","volume":"31","author":"R Kumar","year":"2020","unstructured":"Kumar, R., Nagpal, S., Kaushik, S., Mendiratta, S.: COVID-19 diagnostic approaches: different roads to the same destination. Virusdisease 31(2), 97\u2013105 (2020)","journal-title":"Virusdisease"},{"issue":"8","key":"824_CR14","doi-asserted-by":"publisher","first-page":"e105067","DOI":"10.1371\/journal.pone.0105067","volume":"9","author":"P Skewes-Cox","year":"2014","unstructured":"Skewes-Cox, P., Sharpton, T.J., Pollard, K.S., DeRisi, J.L.: Profile hidden Markov models for the detection of viruses within metagenomic sequence data. PLoS ONE 9(8), e105067 (2014). https:\/\/doi.org\/10.1371\/journal.pone.0105067","journal-title":"PLoS ONE"},{"issue":"11","key":"824_CR15","doi-asserted-by":"publisher","first-page":"3552","DOI":"10.1093\/bioinformatics\/btaa145","volume":"36","author":"S Cleemput","year":"2020","unstructured":"Cleemput, S., Dumon, W., Fonseca, V., et al.: Genome Detective Coronavirus Typing Tool for rapid identification and characterization of novel coronavirus genomes. Bioinformatics 36(11), 3552\u20133555 (2020). https:\/\/doi.org\/10.1093\/bioinformatics\/btaa145","journal-title":"Bioinformatics"},{"issue":"1","key":"824_CR16","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1186\/s12859-018-2340-x","volume":"19","author":"Z Bzhalava","year":"2018","unstructured":"Bzhalava, Z., Tampuu, A., Ba\u0142a, P., Vicente, R., Dillner, J.: Machine Learning for detection of viral sequences in human metagenomic datasets. BMC Bioinform. 19(1), 1\u201311 (2018)","journal-title":"BMC Bioinform."},{"key":"824_CR17","doi-asserted-by":"crossref","unstructured":"Abdelkareem, A.O., Khalil, M.I., Elbehery, A.H.A., Abbas, H.M.: Viral sequence identification in metagenomes using natural language processing techniques. 1\u201313(2020). bioRxiv 2020.01.10.892158\u00a0","DOI":"10.1101\/2020.01.10.892158"},{"issue":"7","key":"824_CR18","doi-asserted-by":"publisher","first-page":"990","DOI":"10.1101\/gr.200535.115","volume":"26","author":"DR Kelley","year":"2016","unstructured":"Kelley, D.R., Snoek, J., Rinn, J.L.: Basset: learning the regulatory code of the accessible genome with deep convolutional neural networks. Genome Res. 26(7), 990\u2013999 (2016). https:\/\/doi.org\/10.1101\/gr.200535.115","journal-title":"Genome Res."},{"issue":"1","key":"824_CR19","doi-asserted-by":"publisher","first-page":"69","DOI":"10.1186\/s40168-017-0283-5","volume":"5","author":"J Ren","year":"2017","unstructured":"Ren, J., Ahlgren, N.A., Lu, Y.Y., Fuhrman, J.A., Sun, F.: VirFinder: a novel k-mer based tool for identifying viral sequences from assembled metagenomic data. Microbiome. 5(1), 69 (2017). https:\/\/doi.org\/10.1186\/s40168-017-0283-5","journal-title":"Microbiome."},{"issue":"9","key":"824_CR20","doi-asserted-by":"publisher","first-page":"e0222271","DOI":"10.1371\/journal.pone.0222271","volume":"14","author":"A Tampuu","year":"2019","unstructured":"Tampuu, A., Bzhalava, Z., Dillner, J., Vicente, R.: ViraMiner: Deep learning on raw DNA sequences for identifying viral genomes in human samples. PLoS ONE 14(9), e0222271 (2019). https:\/\/doi.org\/10.1371\/journal.pone.0222271","journal-title":"PLoS ONE"},{"key":"824_CR21","unstructured":"Ren, J., Song, K., Deng, C., Ahlgren, N.A., Fuhrman, J.A., Li, Y, Xie, X., Sun, F.: Identifying viruses from metagenomic data by deep learning. arXiv preprint arXiv:1806.07810 (2018)"},{"key":"824_CR22","doi-asserted-by":"publisher","DOI":"10.1101\/2020.03.13.990242","author":"A Lopez-Rincon","year":"2020","unstructured":"Lopez-Rincon, A., Tonda, A., Mendoza-Maldonado, L., et al.: Accurate Identification of SARS-CoV-2 from viral genome sequences using deep learning. bioRxiv (2020). https:\/\/doi.org\/10.1101\/2020.03.13.990242","journal-title":"bioRxiv"},{"key":"824_CR23","doi-asserted-by":"publisher","DOI":"10.1101\/2020.02.25.20021568","author":"U Chen","year":"2019","unstructured":"Chen, U., Wu, L., Zhang, J., et al.: Deep learning-based model for detecting 2019 novel coronavirus pneumonia on high-resolution computed tomography: a prospective study. medRxiv (2019). https:\/\/doi.org\/10.1101\/2020.02.25.20021568","journal-title":"medRxiv"},{"key":"824_CR24","doi-asserted-by":"publisher","first-page":"103792","DOI":"10.1016\/j.compbiomed.2020.103792","volume":"121","author":"T Ozturk","year":"2020","unstructured":"Ozturk, T., Talo, M., Yildirim, E.A., Baloglu, U.B., Yildirim, O., Acharya, U.R.: Automated detection of COVID-19 cases using deep neural networks with X-ray images. Comput. Biol. Med. 121, 103792 (2020)","journal-title":"Comput. Biol. Med."},{"key":"824_CR25","unstructured":"Cohen. Covid chest x-ray dataset. https:\/\/github.com\/ieee8023\/covid-chestxray-dataset, 2020. Accessed 3 April 2020"},{"key":"824_CR26","unstructured":"Mooney.\u201d Kaggle chest x-ray images (pneumonia) dataset. https:\/\/github.com\/ieee8023\/covid-chestxray-dataset, 2020. Accessed 3 April 2020"},{"key":"824_CR27","unstructured":"Hemdan, E. E. D., Shouman, M. A., Karar, M. E.: Covidx-net: A framework of deep learning classifiers to diagnose covid-19 in x-ray images. arXiv preprint arXiv:2003.11055 (2020)"},{"key":"824_CR28","doi-asserted-by":"publisher","first-page":"869","DOI":"10.1016\/j.compbiomed.2020.103869","volume":"122","author":"T Mahmud","year":"2020","unstructured":"Mahmud, T., Rahman, M.A., Fattah, S.A.: CovXNet: A multi-dilation convolutional neural network for automatic COVID-19 and other pneumonia detection from chest X-ray images with transferable multi-receptive feature optimization. Comput. Biol. Med. 122, 869 (2020)","journal-title":"Comput. Biol. Med."},{"key":"824_CR29","doi-asserted-by":"publisher","DOI":"10.1002\/ima.22544","author":"V Dhaka","year":"2021","unstructured":"Dhaka, V., Rani, G., et al.: A deep learning model for mass screening of COVID-19. Int. J. Imaging Technol. (2021). https:\/\/doi.org\/10.1002\/ima.22544","journal-title":"Int. J. Imaging Technol."},{"key":"824_CR30","unstructured":"Creswell, A., Arulkumaran, K., Bharath, A.A.: On denoising autoencoders trained to minimize binary cross-entropy. arXiv preprint arXiv:1708.08487 (2017)"},{"key":"824_CR31","unstructured":"National Center for Biotechnology Information: 2020. https:\/\/www.ncbi.nlm.nih.gov\/labs\/virus\/vssi\/#\/virus?SeqType_s=Nucleotide&VirusLineage_ss=Severe%20acute%20respiratory%20syndrome-related%20coronavirus,%20taxid:694009. Accessed 26 Mar 2020"},{"key":"824_CR32","unstructured":"National Center for Biotechnology Information: 2020. https:\/\/www.ncbi.nlm.nih.gov\/labs\/virus\/vssi\/#\/virus?SeqType_s=Nucleotide&VirusLineage_ss=SARS%20coronavirus%20ExoN1,%20taxid:627440. Accessed 26 Mar 2020"},{"key":"824_CR33","unstructured":"National Center for Biotechnology Information: 2020. https:\/\/www.ncbi.nlm.nih.gov\/labs\/virus\/vssi\/#\/virus?SeqType_s=Nucleotide&VirusLineage_ss=Middle%20East%20respiratory%20syndrome-related%20coronavirus%20(MERS-CoV),%20taxid:1335626. Accessed 26 Mar 2020"},{"key":"824_CR34","unstructured":"National Center for Biotechnology Information: 2020. https:\/\/www.ncbi.nlm.nih.gov\/labs\/virus\/vssi\/#\/virus?SeqType_s=Nucleotide&VirusLineage_ss=Human%20immunodeficiency%20virus%201%20(HIV-1),%20taxid:11676. Accessed 26 Mar 2020"},{"key":"824_CR35","unstructured":"National Center for Biotechnology Information: 2020. https:\/\/www.ncbi.nlm.nih.gov\/labs\/virus\/vssi\/#\/virus?SeqType_s=Nucleotide&VirusLineage_ss=Bat%20SARS-like%20coronavirus,%20taxid:1508227. Accessed 26 Mar 2020"},{"key":"824_CR36","doi-asserted-by":"publisher","first-page":"61677","DOI":"10.1109\/ACCESS.2018.2874767","volume":"6","author":"T Carneiro","year":"2018","unstructured":"Carneiro, T., Da N\u00f3brega, R.V., Nepomuceno, T., Bian, G.B., de Albuquerque, V.H., Reboucas Filho, P.P.: Performance analysis of google collaboratory as a tool for accelerating deep learning applications. IEEE Access. 6, 61677\u201361685 (2018)","journal-title":"IEEE Access."}],"container-title":["Multimedia Systems"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s00530-021-00824-3.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s00530-021-00824-3\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s00530-021-00824-3.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,7,28]],"date-time":"2022-07-28T21:27:19Z","timestamp":1659043639000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s00530-021-00824-3"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,7,21]]},"references-count":36,"journal-issue":{"issue":"4","published-print":{"date-parts":[[2022,8]]}},"alternative-id":["824"],"URL":"https:\/\/doi.org\/10.1007\/s00530-021-00824-3","relation":{},"ISSN":["0942-4962","1432-1882"],"issn-type":[{"value":"0942-4962","type":"print"},{"value":"1432-1882","type":"electronic"}],"subject":[],"published":{"date-parts":[[2021,7,21]]},"assertion":[{"value":"21 September 2020","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"20 June 2021","order":2,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"21 July 2021","order":3,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}},{"order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Declarations"}},{"value":"The authors declare that they have no conflict of interest.","order":2,"name":"Ethics","group":{"name":"EthicsHeading","label":"Conflict of interest"}},{"value":"This content has been made available to all.","name":"free","label":"Free to read"}]}}