iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://api.crossref.org/works/10.1007/S00521-021-06084-6
{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,5]],"date-time":"2024-09-05T05:53:59Z","timestamp":1725515639407},"reference-count":62,"publisher":"Springer Science and Business Media LLC","issue":"21","license":[{"start":{"date-parts":[[2021,5,13]],"date-time":"2021-05-13T00:00:00Z","timestamp":1620864000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0"},{"start":{"date-parts":[[2021,5,13]],"date-time":"2021-05-13T00:00:00Z","timestamp":1620864000000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0"}],"funder":[{"DOI":"10.13039\/501100012226","name":"Fundamental Research Funds for the Central Universities","doi-asserted-by":"publisher","award":["2652018091"],"id":[{"id":"10.13039\/501100012226","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/100007195","name":"Universit\u00e0 degli Studi di Napoli Federico II","doi-asserted-by":"crossref","id":[{"id":"10.13039\/100007195","id-type":"DOI","asserted-by":"crossref"}]}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Neural Comput & Applic"],"published-print":{"date-parts":[[2021,11]]},"abstract":"Abstract<\/jats:title>Slope deformation prediction is crucial for early warning of slope failure, which can prevent property damage and save human life. Existing predictive models focus on predicting the displacement of a single monitoring point based on time series data, without considering spatial correlations among monitoring points, which makes it difficult to reveal the displacement changes in the entire monitoring system and ignores the potential threats from nonselected points. To address the above problem, this paper presents a novel deep learning method for predicting the slope deformation, by considering the spatial correlations between all points in the entire displacement monitoring system. The essential idea behind the proposed method is to predict the slope deformation based on the global information (i.e., the correlated displacements of all points in the entire monitoring system), rather than based on the local information (i.e., the displacements of a specified single point in the monitoring system). In the proposed method, (1) a weighted adjacency matrix is built to interpret the spatial correlations between all points, (2) a feature matrix is assembled to store the time-series displacements of all points, and (3) one of the state-of-the-art deep learning models, i.e., T-GCN, is developed to process the above graph-structured data consisting of two matrices. The effectiveness of the proposed method is verified by performing predictions based on a real dataset. The proposed method can be applied to predict time-dependency information in other similar geohazard scenarios, based on time-series data collected from multiple monitoring points.<\/jats:p>","DOI":"10.1007\/s00521-021-06084-6","type":"journal-article","created":{"date-parts":[[2021,5,13]],"date-time":"2021-05-13T09:02:51Z","timestamp":1620896571000},"page":"14441-14457","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":39,"title":["A deep learning approach using graph convolutional networks for slope deformation prediction based on time-series displacement data"],"prefix":"10.1007","volume":"33","author":[{"given":"Zhengjing","family":"Ma","sequence":"first","affiliation":[]},{"given":"Gang","family":"Mei","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-0401-8422","authenticated-orcid":false,"given":"Edoardo","family":"Prezioso","sequence":"additional","affiliation":[]},{"given":"Zhongjian","family":"Zhang","sequence":"additional","affiliation":[]},{"given":"Nengxiong","family":"Xu","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2021,5,13]]},"reference":[{"key":"6084_CR1","unstructured":"Abadi M, Agarwal A, Barham P, Brevdo E, Chen Zhifeng\u00a0aro C, Corrado G, Davis A, Dean J, Devin M, Ghemawat S, Goodfellow I, Harp A, Irving G, Isard M, Jia Y, Kaiser L, Kudlur M, Levenberg J, Zheng X (2016) Tensorflow: large-scale machine learning on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467"},{"key":"6084_CR2","doi-asserted-by":"publisher","unstructured":"Abedjan Z, Golab L, Naumann F (2017) Data profiling\u2014a tutorial. In: Proceedings of the 2017 ACM international conference on management of data (SIGMOD '17). Association for Computing Machinery, New York, NY, USA, pp 1747\u20131751. https:\/\/doi.org\/10.1145\/3035918.3054772","DOI":"10.1145\/3035918.3054772"},{"key":"6084_CR3","doi-asserted-by":"publisher","first-page":"902","DOI":"10.1016\/j.jhydrol.2016.07.048","volume":"541","author":"HA Afan","year":"2016","unstructured":"Afan HA, El-shafie A, Mohtar WHMW, Yaseen ZM (2016) Past, present and prospect of an artificial intelligence (AI) based model for sediment transport prediction. J Hydrol 541:902\u2013913. https:\/\/doi.org\/10.1016\/j.jhydrol.2016.07.048","journal-title":"J Hydrol"},{"key":"6084_CR4","doi-asserted-by":"crossref","unstructured":"Anantrasirichai N, Biggs J, Kelevitz K, Sadeghi Z, Wright T, Thompson J, Achim A, Bull D (2020) Deep learning framework for detecting ground deformation in the built environment using satellite INSAR\ndata. arXiv preprint arXiv:2005.03221","DOI":"10.31223\/OSF.IO\/PW2GS"},{"issue":"1","key":"6084_CR5","doi-asserted-by":"publisher","first-page":"235","DOI":"10.1007\/s00603-014-0554-4","volume":"48","author":"C Atzeni","year":"2014","unstructured":"Atzeni C, Barla M, Pieraccini M, Antolini F (2014) Early warning monitoring of natural and engineered slopes with ground-based synthetic-aperture radar. Rock Mech Rock Eng 48(1):235\u2013246. https:\/\/doi.org\/10.1007\/s00603-014-0554-4","journal-title":"Rock Mech Rock Eng"},{"issue":"2","key":"6084_CR6","doi-asserted-by":"publisher","first-page":"157","DOI":"10.1109\/72.279181","volume":"5","author":"Y Bengio","year":"1994","unstructured":"Bengio Y, Simard P, Frasconi P (1994) Learning long-term dependencies with gradient descent is difficult. IEEE Trans Neural Netw 5(2):157\u2013166. https:\/\/doi.org\/10.1109\/72.279181","journal-title":"IEEE Trans Neural Netw"},{"key":"6084_CR7","doi-asserted-by":"publisher","first-page":"111","DOI":"10.1016\/j.enggeo.2015.05.020","volume":"195","author":"L Benoit","year":"2015","unstructured":"Benoit L, Briole P, Martin O, Thom C, Malet JP, Ulrich P (2015) Monitoring landslide displacements with the geocube wireless network of low-cost GPS. Eng Geol 195:111\u2013121. https:\/\/doi.org\/10.1016\/j.enggeo.2015.05.020","journal-title":"Eng Geol"},{"key":"6084_CR8","doi-asserted-by":"publisher","first-page":"9","DOI":"10.1186\/s40677-017-0073-1","volume":"4","author":"N Casagli","year":"2017","unstructured":"Casagli N, Frodella W, Morelli S, Tofani V, Ciampalini A, Intrieri E, Raspini F, Rossi G, Tanteri L, Lu P (2017) Spaceborne, UAV and ground-based remote sensing techniques for landslide mapping, monitoring and early warning. Geoenviron Disasters 4:9\u201323. https:\/\/doi.org\/10.1186\/s40677-017-0073-1","journal-title":"Geoenviron Disasters"},{"key":"6084_CR9","doi-asserted-by":"publisher","first-page":"34","DOI":"10.1016\/j.enggeo.2018.05.012","volume":"242","author":"H Chen","year":"2018","unstructured":"Chen H, Qin S, Xue L, Yang B, Zhang K (2018) A physical model predicting instability of rock slopes with locked segments along a potential slip surface. Eng Geol 242:34\u201343. https:\/\/doi.org\/10.1016\/j.enggeo.2018.05.012","journal-title":"Eng Geol"},{"key":"6084_CR10","doi-asserted-by":"publisher","unstructured":"Cho K, van Merri\u00ebnboer B, Bahdanau D, Bengio Y (2014) On the properties of neural machine translation: encoder\u2013decoder approaches. arXiv preprint arXiv:1409.1259. https:\/\/doi.org\/10.3115\/v1\/W14-4012","DOI":"10.3115\/v1\/W14-4012"},{"key":"6084_CR11","doi-asserted-by":"publisher","first-page":"126","DOI":"10.1016\/j.enggeo.2017.10.018","volume":"231","author":"SE Cho","year":"2017","unstructured":"Cho SE (2017) Prediction of shallow landslide by surficial stability analysis considering rainfall infiltration. Eng Geol 231:126\u2013138. https:\/\/doi.org\/10.1016\/j.enggeo.2017.10.018","journal-title":"Eng Geol"},{"issue":"1","key":"6084_CR12","doi-asserted-by":"publisher","first-page":"176","DOI":"10.1139\/t02-085","volume":"40","author":"G Crosta","year":"2003","unstructured":"Crosta G, Agliardi F (2003) Failure forecast for large rock slides by surface displacement measurements. Can Geotech J 40(1):176\u2013191. https:\/\/doi.org\/10.1139\/t02-085","journal-title":"Can Geotech J"},{"issue":"2","key":"6084_CR13","doi-asserted-by":"publisher","first-page":"727","DOI":"10.1007\/s11069-018-3417-6","volume":"94","author":"A Dikshit","year":"2018","unstructured":"Dikshit A, Satyam DN, Towhata I (2018) Early warning system using tilt sensors in Chibo, Kalimpong, Darjeeling Himalayas, India. Nat Hazards 94(2):727\u2013741. https:\/\/doi.org\/10.1007\/s11069-018-3417-6","journal-title":"Nat Hazards"},{"key":"6084_CR14","first-page":"2224","volume":"13","author":"D Duvenaud","year":"2015","unstructured":"Duvenaud D, Maclaurin D, Aguilera-Iparraguirre J, G\u00f3mez-Bombarelli R, Hirzel T, Aspuru-Guzik A, Adams R (2015) Convolutional networks on graphs for learning molecular fingerprints. Adv Neural Inf Process Syst (NIPS) 13:2224\u20132232","journal-title":"Adv Neural Inf Process Syst (NIPS)"},{"key":"6084_CR15","doi-asserted-by":"publisher","first-page":"15","DOI":"10.1016\/j.enggeo.2014.08.006","volume":"181","author":"U Eidsvig","year":"2014","unstructured":"Eidsvig U, Papathoma-K\u00f6hle M, Du J, Glade T, Vangelsten B (2014) Quantification of model uncertainty in debris flow vulnerability assessment. Eng Geol 181:15\u201326. https:\/\/doi.org\/10.1016\/j.enggeo.2014.08.006","journal-title":"Eng Geol"},{"issue":"3\u20134","key":"6084_CR16","doi-asserted-by":"publisher","first-page":"875","DOI":"10.1007\/s00704-016-1735-8","volume":"128","author":"F Fahimi","year":"2017","unstructured":"Fahimi F, Yaseen ZM, El-shafie A (2017) Application of soft computing based hybrid models in hydrological variables modeling: a comprehensive review. Theor Appl Climatol 128(3\u20134):875\u2013903. https:\/\/doi.org\/10.1007\/s00704-016-1735-8","journal-title":"Theor Appl Climatol"},{"issue":"2","key":"6084_CR17","doi-asserted-by":"publisher","first-page":"2123","DOI":"10.5194\/nhess-16-2123-2016","volume":"13","author":"T Fathani","year":"2016","unstructured":"Fathani T, Karnawati D, Wilopo W (2016) An integrated methodology to develop a standard for landslide early warning systems. Nat Hazards Earth Syst Sci 13(2):2123\u20132135. https:\/\/doi.org\/10.5194\/nhess-16-2123-2016","journal-title":"Nat Hazards Earth Syst Sci"},{"issue":"1","key":"6084_CR18","doi-asserted-by":"publisher","first-page":"245","DOI":"10.1007\/s12665-011-1231-5","volume":"66","author":"A Federico","year":"2012","unstructured":"Federico A, Popescu M, Elia G, Fidelibus C, Intern G, Murianni A (2012) Prediction of time to slope failure: a general framework. Environ Earth Sci 66(1):245\u2013256. https:\/\/doi.org\/10.1007\/s12665-011-1231-5","journal-title":"Environ Earth Sci"},{"issue":"8","key":"6084_CR19","doi-asserted-by":"publisher","first-page":"2161","DOI":"10.5194\/nhess-18-2161-2018","volume":"18","author":"MJ Froude","year":"2018","unstructured":"Froude MJ, Petley DN (2018) Global fatal landslide occurrence from 2004 to 2016. Nat Hazards Earth Syst Sci 18(8):2161\u20132181. https:\/\/doi.org\/10.5194\/nhess-18-2161-2018","journal-title":"Nat Hazards Earth Syst Sci"},{"issue":"2","key":"6084_CR20","doi-asserted-by":"publisher","first-page":"8","DOI":"10.3313\/jls1964.22.2-8","volume":"22","author":"T Fukuzono","year":"1985","unstructured":"Fukuzono T (1985) A method to predict the time of slope failure caused by rainfall using the inverse number of velocity of surface displacement. Landslides 22(2):8\u201313. https:\/\/doi.org\/10.3313\/jls1964.22.2-8","journal-title":"Landslides"},{"key":"6084_CR21","unstructured":"Fukuzono T (1985) A new method for predicting the failure time of a slope. In: Proceedings of 4th international conference and field workshop on landslide, 1985, pp. 145\u2013150"},{"key":"6084_CR22","doi-asserted-by":"publisher","first-page":"3656","DOI":"10.1609\/aaai.v33i01.33013656","volume":"33","author":"X Geng","year":"2019","unstructured":"Geng X, Li Y, Wang L, Zhang L, Yang Q, Ye J, Liu Y (2019) Spatiotemporal multi-graph convolution network for ride-hailing demand forecasting. Proc AAAI Conf Artif Intell 33:3656\u20133663. https:\/\/doi.org\/10.1609\/aaai.v33i01.33013656","journal-title":"Proc AAAI Conf Artif Intell"},{"issue":"1","key":"6084_CR23","doi-asserted-by":"publisher","first-page":"013104","DOI":"10.1063\/1.4905458","volume":"25","author":"PL Gentili","year":"2015","unstructured":"Gentili PL, Gotoda H, Dolnik M, Epstein IR (2015) Analysis and prediction of aperiodic hydrodynamic oscillatory time series by feed-forward neural networks, fuzzy logic, and a local nonlinear predictor. Chaos Interdiscip J Nonlinear Sci 25(1):013104. https:\/\/doi.org\/10.1063\/1.4905458","journal-title":"Chaos Interdiscip J Nonlinear Sci"},{"issue":"3","key":"6084_CR24","doi-asserted-by":"publisher","first-page":"1669","DOI":"10.1007\/s11069-013-1000-8","volume":"70","author":"T Glade","year":"2014","unstructured":"Glade T, Nadim F (2014) Early warning systems for natural hazards and risks. Nat Hazards 70(3):1669\u20131671. https:\/\/doi.org\/10.1007\/s11069-013-1000-8","journal-title":"Nat Hazards"},{"issue":"2","key":"6084_CR25","doi-asserted-by":"publisher","first-page":"129","DOI":"10.1016\/j.acha.2010.04.005","volume":"30","author":"DK Hammond","year":"2011","unstructured":"Hammond DK, Vandergheynst P, Gribonval R (2011) Wavelets on graphs via spectral graph theory. Appl Comput Harmon Anal 30(2):129\u2013150. https:\/\/doi.org\/10.1016\/j.acha.2010.04.005","journal-title":"Appl Comput Harmon Anal"},{"issue":"8","key":"6084_CR26","doi-asserted-by":"publisher","first-page":"1735","DOI":"10.1162\/neco.1997.9.8.1735","volume":"9","author":"S Hochreiter","year":"1997","unstructured":"Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural Comput 9(8):1735\u20131780. https:\/\/doi.org\/10.1162\/neco.1997.9.8.1735","journal-title":"Neural Comput"},{"key":"6084_CR27","doi-asserted-by":"publisher","first-page":"173","DOI":"10.1016\/j.enggeo.2017.01.016","volume":"218","author":"F Huang","year":"2017","unstructured":"Huang F, Huang J, Jiang S, Zhou C (2017) Landslide displacement prediction based on multivariate chaotic model and extreme learning machine. Eng Geol 218:173\u2013186. https:\/\/doi.org\/10.1016\/j.enggeo.2017.01.016","journal-title":"Eng Geol"},{"key":"6084_CR28","doi-asserted-by":"publisher","unstructured":"Huang F, Yin K, He T, Zhou C, Zhang J (2016) Influencing factor analysis and displacement prediction in reservoir landslides\u2014A case study of three gorges reservoir (China). Technical Gazette 23(2):617\u2013626. https:\/\/doi.org\/10.17559\/TV-20150314105216","DOI":"10.17559\/TV-20150314105216"},{"issue":"1","key":"6084_CR29","doi-asserted-by":"publisher","first-page":"217","DOI":"10.1007\/s10346-019-01274-9","volume":"17","author":"F Huang","year":"2020","unstructured":"Huang F, Zhang J, Zhou C, Wang Y, Huang J, Zhu L (2020) A deep learning algorithm using a fully connected sparse autoencoder neural network for landslide susceptibility prediction. Landslides 17(1):217\u2013229. https:\/\/doi.org\/10.1007\/s10346-019-01274-9","journal-title":"Landslides"},{"issue":"4","key":"6084_CR30","doi-asserted-by":"publisher","first-page":"679","DOI":"10.1016\/j.ijforecast.2006.03.001","volume":"22","author":"RJ Hyndman","year":"2006","unstructured":"Hyndman RJ, Koehler AB (2006) Another look at measures of forecast accuracy. Int J Forecast 22(4):679\u2013688. https:\/\/doi.org\/10.1016\/j.ijforecast.2006.03.001","journal-title":"Int J Forecast"},{"key":"6084_CR31","doi-asserted-by":"publisher","first-page":"40","DOI":"10.1016\/j.neucom.2015.08.118","volume":"198","author":"P Jiang","year":"2016","unstructured":"Jiang P, Chen J (2016) Displacement prediction of landslide based on generalized regression neural networks with k-fold cross-validation. Neurocomputing 198:40\u201347. https:\/\/doi.org\/10.1016\/j.neucom.2015.08.118","journal-title":"Neurocomputing"},{"issue":"3","key":"6084_CR32","doi-asserted-by":"publisher","first-page":"425","DOI":"10.1007\/s10346-013-0391-7","volume":"11","author":"T Kavzoglu","year":"2014","unstructured":"Kavzoglu T, Sahin EK, Colkesen I (2014) Landslide susceptibility mapping using GIS-based multi-criteria decision analysis, support vector machines, and logistic regression. Landslides 11(3):425\u2013439. https:\/\/doi.org\/10.1007\/s10346-013-0391-7","journal-title":"Landslides"},{"key":"6084_CR33","unstructured":"Kingma DP, Ba J (2014) Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980"},{"key":"6084_CR34","doi-asserted-by":"publisher","unstructured":"Lacasse S, Nadim F (2009) Landslide risk assessment and mitigation strategy. In: Sassa K, Canuti P (eds) Landslides \u2013 disaster risk reduction. Springer, Berlin, Heidelberg, pp 31\u201362. https:\/\/doi.org\/10.1007\/978-3-540-69970-5-3","DOI":"10.1007\/978-3-540-69970-5-3"},{"issue":"3","key":"6084_CR35","doi-asserted-by":"publisher","first-page":"693","DOI":"10.1007\/s10346-019-01312-6","volume":"17","author":"H Li","year":"2020","unstructured":"Li H, Xu Q, He Y, Fan X, Li S (2020) Modeling and predicting reservoir landslide displacement with deep belief network and EWMA control charts: a case study in three gorges reservoir. Landslides 17(3):693\u2013707. https:\/\/doi.org\/10.1007\/s10346-019-01312-6","journal-title":"Landslides"},{"key":"6084_CR36","doi-asserted-by":"publisher","first-page":"91","DOI":"10.1016\/j.enggeo.2014.11.014","volume":"186","author":"C Lian","year":"2015","unstructured":"Lian C, Zeng Z, Yao W, Tang H (2015) Multiple neural networks switched prediction for landslide displacement. Eng Geol 186:91\u201399. https:\/\/doi.org\/10.1016\/j.enggeo.2014.11.014","journal-title":"Eng Geol"},{"key":"6084_CR37","doi-asserted-by":"publisher","first-page":"265","DOI":"10.5194\/nhessd-1-5295-2013","volume":"675","author":"Y Liu","year":"2014","unstructured":"Liu Y, Zhang YX (2014) Application of optimized parameters SVM in deformation prediction of creep landslide tunnel. Appl Mech Mater (Trans Tech Publ.) 675:265\u2013268. https:\/\/doi.org\/10.5194\/nhessd-1-5295-2013","journal-title":"Appl Mech Mater (Trans Tech Publ.)"},{"issue":"5","key":"6084_CR38","doi-asserted-by":"publisher","first-page":"889","DOI":"10.1007\/s10346-013-0443-z","volume":"11","author":"Z Liu","year":"2014","unstructured":"Liu Z, Shao J, Xu W, Chen H, Shi C (2014) Comparison on landslide nonlinear displacement analysis and prediction with computational intelligence approaches. Landslides 11(5):889\u2013896. https:\/\/doi.org\/10.1007\/s10346-013-0443-z","journal-title":"Landslides"},{"issue":"3","key":"6084_CR39","doi-asserted-by":"publisher","first-page":"1275","DOI":"10.1007\/s10346-017-0804-0","volume":"14","author":"J Ma","year":"2017","unstructured":"Ma J, Tang H, Liu X, Hu X, Sun M, Song Y (2017) Establishment of a deformation forecasting model for a step-like landslide based on decision tree c5. 0 and two-step cluster algorithms: a case study in the three gorges reservoir area, China. Landslides 14(3):1275\u20131281. https:\/\/doi.org\/10.1007\/s10346-017-0804-0","journal-title":"Landslides"},{"key":"6084_CR40","doi-asserted-by":"publisher","DOI":"10.1007\/s00521-020-05529-8","author":"Z Ma","year":"2020","unstructured":"Ma Z, Mei G, Piccialli F (2020) Machine learning for landslides prevention: a survey. Neural Comput Appl. https:\/\/doi.org\/10.1007\/s00521-020-05529-8","journal-title":"Neural Comput Appl"},{"issue":"5","key":"6084_CR41","doi-asserted-by":"publisher","first-page":"4371","DOI":"10.1109\/JIOT.2019.2952593","volume":"7","author":"G Mei","year":"2020","unstructured":"Mei G, Xu N, Qin J, Wang B, Qi P (2020) A survey of internet of things (IOT) for geohazard prevention: applications, technologies, and challenges. IEEE Internet Things J 7(5):4371\u20134386. https:\/\/doi.org\/10.1109\/JIOT.2019.2952593","journal-title":"IEEE Internet Things J"},{"issue":"3","key":"6084_CR42","doi-asserted-by":"publisher","first-page":"475","DOI":"10.1007\/s10346-017-0883-y","volume":"15","author":"F Miao","year":"2018","unstructured":"Miao F, Wu Y, Xie Y, Li Y (2018) Prediction of landslide displacement with step-like behavior based on multialgorithm optimization and a support vector regression model. Landslides 15(3):475\u2013488. https:\/\/doi.org\/10.1007\/s10346-017-0883-y","journal-title":"Landslides"},{"key":"6084_CR43","doi-asserted-by":"publisher","first-page":"73","DOI":"10.1680\/jgeot.16.P.037","volume":"229","author":"D Park","year":"2017","unstructured":"Park D, Michalowski RL (2017) Three-dimensional stability analysis of slopes in hard soil\/soft rock with tensile strength cut-off. Eng Geol 229:73\u201384. https:\/\/doi.org\/10.1680\/jgeot.16.P.037","journal-title":"Eng Geol"},{"key":"6084_CR44","doi-asserted-by":"publisher","first-page":"115","DOI":"10.1016\/j.pmcj.2020.101210","volume":"66","author":"F Piccialli","year":"2020","unstructured":"Piccialli F, Giampaolo F, Casolla G, Cola V, Li K (2020) A deep learning approach for path prediction in a location-based IOT system. Pervasive Mobile Comput 66:115\u2013120. https:\/\/doi.org\/10.1016\/j.pmcj.2020.101210","journal-title":"Pervasive Mobile Comput"},{"key":"6084_CR45","doi-asserted-by":"publisher","first-page":"111","DOI":"10.1016\/j.inffus.2020.09.006","volume":"66","author":"F Piccialli","year":"2021","unstructured":"Piccialli F, Somma V, Giampaolo F, Cuomo S, Fortino G (2021) A survey on deep learning in medicine: Why, how and when? Inf Fusion 66:111\u2013137. https:\/\/doi.org\/10.1016\/j.inffus.2020.09.006","journal-title":"Inf Fusion"},{"key":"6084_CR46","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1016\/j.aei.2019.100944","volume":"42","author":"K Rashid","year":"2019","unstructured":"Rashid K, Louis J (2019) Times-series data augmentation and deep learning for construction equipment activity recognition. Adv Eng Inform 42:1\u201312. https:\/\/doi.org\/10.1016\/j.aei.2019.100944","journal-title":"Adv Eng Inform"},{"issue":"5","key":"6084_CR47","first-page":"194","volume":"3","author":"M Rawat","year":"2011","unstructured":"Rawat M, Joshi V, Rawat M, Kumar K (2011) Landslide movement monitoring using GPS technology: a case study of Bakthang landslide, Gangtok, East Sikkim, India. J Dev Agric Econ 3(5):194\u2013200","journal-title":"J Dev Agric Econ"},{"key":"6084_CR48","doi-asserted-by":"publisher","first-page":"72","DOI":"10.1016\/j.enggeo.2018.08.003","volume":"245","author":"A Segalini","year":"2018","unstructured":"Segalini A, Valletta A, Carri A (2018) Landslide time-of-failure forecast and alert threshold assessment: a generalized criterion. Eng Geol 245:72\u201380. https:\/\/doi.org\/10.1016\/j.enggeo.2018.08.003","journal-title":"Eng Geol"},{"key":"6084_CR49","doi-asserted-by":"publisher","first-page":"853","DOI":"10.13140\/RG.2.1.1683.4087","volume":"15","author":"S Segoni","year":"2015","unstructured":"Segoni S, Battistini A, Rosi A, Catani F, Moretti S, Casagli N, Lagomarsino D, Rossi G (2015) Technical note: An operational landslide early warning system at regional scale based on space-time-variable rainfall thresholds. Nat Hazards Earth Syst Sci 15:853\u2013861. https:\/\/doi.org\/10.13140\/RG.2.1.1683.4087","journal-title":"Nat Hazards Earth Syst Sci"},{"issue":"6160","key":"6084_CR50","doi-asserted-by":"publisher","first-page":"125","DOI":"10.1038\/332125a0","volume":"332","author":"B Voight","year":"1988","unstructured":"Voight B (1988) A method for prediction of volcanic eruptions. Nature 332(6160):125\u2013130. https:\/\/doi.org\/10.1038\/332125a0","journal-title":"Nature"},{"issue":"4","key":"6084_CR51","doi-asserted-by":"publisher","first-page":"395","DOI":"10.1007\/s11222-007-9033-z","volume":"17","author":"U Von Luxburg","year":"2007","unstructured":"Von Luxburg U (2007) A tutorial on spectral clustering. Stat Comput 17(4):395\u2013416. https:\/\/doi.org\/10.1007\/s11222-007-9033-z","journal-title":"Stat Comput"},{"issue":"1","key":"6084_CR52","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1038\/s41598-017-17864-3","volume":"8","author":"LC Wu","year":"2017","unstructured":"Wu LC, Kuo C, Loza J, Kurt M, Laksari K, Yanez LZ, Senif D, Anderson SC, Miller LE, Urban JE et al (2017) Detection of American football head impacts using biomechanical features and support vector machine classification. Sci Rep 8(1):1\u201314. https:\/\/doi.org\/10.1038\/s41598-017-17864-3","journal-title":"Sci Rep"},{"key":"6084_CR53","doi-asserted-by":"publisher","DOI":"10.5194\/nhess-2019-48","author":"Y Wu","year":"2019","unstructured":"Wu Y, Niu R, Lu Z (2019) A fast monitor and real time early warning system for landslides in the Baige landslide damming event, Tibet, China. Nat Hazards Earth Syst Sci Discuss. https:\/\/doi.org\/10.5194\/nhess-2019-48","journal-title":"Nat Hazards Earth Syst Sci Discuss"},{"key":"6084_CR54","doi-asserted-by":"publisher","first-page":"87","DOI":"10.1016\/j.cageo.2017.10.013","volume":"111","author":"S Xu","year":"2018","unstructured":"Xu S, Niu R (2018) Displacement prediction of Baijiabao landslide based on empirical mode decomposition and long short-term memory neural network in three Gorges area, China. Comput Geosci 111:87\u201396. https:\/\/doi.org\/10.1016\/j.cageo.2017.10.013","journal-title":"Comput Geosci"},{"issue":"4","key":"6084_CR55","doi-asserted-by":"publisher","first-page":"677","DOI":"10.1007\/s10346-018-01127-x","volume":"16","author":"B Yang","year":"2019","unstructured":"Yang B, Yin K, Lacasse S, Liu Z (2019) Time series analysis and long short-term memory neural network to predict landslide displacement. Landslides 16(4):677\u2013694. https:\/\/doi.org\/10.1007\/s10346-018-01127-x","journal-title":"Landslides"},{"key":"6084_CR56","doi-asserted-by":"publisher","first-page":"829","DOI":"10.1016\/j.jhydrol.2015.10.038","volume":"530","author":"ZM Yaseen","year":"2015","unstructured":"Yaseen ZM, El-Shafie A, Jaafar O, Afan HA, Sayl KN (2015) Artificial intelligence based models for stream-flow forecasting: 2000\u20132015. J Hydrol 530:829\u2013844. https:\/\/doi.org\/10.1016\/j.jhydrol.2015.10.038","journal-title":"J Hydrol"},{"key":"6084_CR57","doi-asserted-by":"publisher","first-page":"387","DOI":"10.1016\/j.jhydrol.2018.11.069","volume":"569","author":"ZM Yaseen","year":"2019","unstructured":"Yaseen ZM, Sulaiman SO, Deo RC, Chau KW (2019) An enhanced extreme learning machine model for river flow forecasting: state-of-the-art, practical applications in water resource engineering area and future research direction. J Hydrol 569:387\u2013408. https:\/\/doi.org\/10.1016\/j.jhydrol.2018.11.069","journal-title":"J Hydrol"},{"key":"6084_CR58","doi-asserted-by":"publisher","DOI":"10.1109\/TITS.2019.2935152","author":"L Zhao","year":"2019","unstructured":"Zhao L, Song Y, Zhang C, Liu Y, Wang P, Lin T, Deng M, Li H (2019) T-GCN: a temporal graph convolutional network for traffic prediction. IEEE Trans Intell Transp Syst. https:\/\/doi.org\/10.1109\/TITS.2019.2935152","journal-title":"IEEE Trans Intell Transp Syst"},{"issue":"11","key":"6084_CR59","doi-asserted-by":"publisher","first-page":"2211","DOI":"10.1007\/s10346-018-1022-0","volume":"15","author":"C Zhou","year":"2018","unstructured":"Zhou C, Yin K, Cao Y, Intrieri E, Ahmed B, Catani F (2018) Displacement prediction of step-like landslide by applying a novel kernel extreme learning machine method. Landslides 15(11):2211\u20132225. https:\/\/doi.org\/10.1007\/s10346-018-1022-0","journal-title":"Landslides"},{"key":"6084_CR60","doi-asserted-by":"publisher","first-page":"213","DOI":"10.1016\/j.enggeo.2017.01.022","volume":"218","author":"X Zhu","year":"2017","unstructured":"Zhu X, Xu Q, Tang M, Nie W, Ma S, Xu Z (2017) Comparison of two optimized machine learning models for predicting displacement of rainfall-induced landslide: a case study in Sichuan province, China. Eng Geol 218:213\u2013222. https:\/\/doi.org\/10.1016\/j.enggeo.2017.01.022","journal-title":"Eng Geol"},{"issue":"7","key":"6084_CR61","doi-asserted-by":"publisher","first-page":"1019","DOI":"10.1016\/j.optlaseng.2011.01.010","volume":"49","author":"ZW Zhu","year":"2011","unstructured":"Zhu ZW, Liu DY, Yuan QY, Liu B, Liu JC (2011) A novel distributed optic fiber transduser for landslides monitoring. Opt Lasers Eng 49(7):1019\u20131024. https:\/\/doi.org\/10.1016\/j.optlaseng.2011.01.010","journal-title":"Opt Lasers Eng"},{"key":"6084_CR62","doi-asserted-by":"publisher","first-page":"1105","DOI":"10.1007\/s00477-020-01824-x","volume":"34","author":"Z Zou","year":"2020","unstructured":"Zou Z, Yang Y, Fan Z, Tang H, Zou M, Hu X, Xiong C, Ma J (2020) Suitability of data preprocessing methods for landslide displacement forecasting. Stoch Environ Res Risk Assess 34:1105\u20131119. https:\/\/doi.org\/10.1007\/s00477-020-01824-x","journal-title":"Stoch Environ Res Risk Assess"}],"container-title":["Neural Computing and Applications"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s00521-021-06084-6.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s00521-021-06084-6\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s00521-021-06084-6.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2021,10,24]],"date-time":"2021-10-24T10:08:55Z","timestamp":1635070135000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s00521-021-06084-6"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,5,13]]},"references-count":62,"journal-issue":{"issue":"21","published-print":{"date-parts":[[2021,11]]}},"alternative-id":["6084"],"URL":"https:\/\/doi.org\/10.1007\/s00521-021-06084-6","relation":{"has-preprint":[{"id-type":"doi","id":"10.36227\/techrxiv.12987995.v1","asserted-by":"object"}]},"ISSN":["0941-0643","1433-3058"],"issn-type":[{"value":"0941-0643","type":"print"},{"value":"1433-3058","type":"electronic"}],"subject":[],"published":{"date-parts":[[2021,5,13]]},"assertion":[{"value":"13 January 2021","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"21 April 2021","order":2,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"13 May 2021","order":3,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}},{"order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Declarations"}},{"value":"The authors declare that they have no conflict of interest.","order":2,"name":"Ethics","group":{"name":"EthicsHeading","label":"Conflict of interest"}}]}}