{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,29]],"date-time":"2024-08-29T11:51:55Z","timestamp":1724932315923},"reference-count":91,"publisher":"Springer Science and Business Media LLC","issue":"16","license":[{"start":{"date-parts":[[2021,12,1]],"date-time":"2021-12-01T00:00:00Z","timestamp":1638316800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2021,12,1]],"date-time":"2021-12-01T00:00:00Z","timestamp":1638316800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Soft Comput"],"published-print":{"date-parts":[[2022,8]]},"DOI":"10.1007\/s00500-021-06519-1","type":"journal-article","created":{"date-parts":[[2021,12,1]],"date-time":"2021-12-01T15:02:49Z","timestamp":1638370969000},"page":"7519-7533","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":9,"title":["Analyzing fibrous tissue pattern in fibrous dysplasia bone images using deep R-CNN networks for segmentation"],"prefix":"10.1007","volume":"26","author":[{"given":"A.","family":"Saranya","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-8058-6416","authenticated-orcid":false,"given":"Kottilingam","family":"Kottursamy","sequence":"additional","affiliation":[]},{"given":"Ahmad Ali","family":"AlZubi","sequence":"additional","affiliation":[]},{"given":"Ali Kashif","family":"Bashir","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2021,12,1]]},"reference":[{"key":"6519_CR1","doi-asserted-by":"publisher","first-page":"86","DOI":"10.1016\/j.ijleo.2017.03.051","volume":"140","author":"M Ahmad","year":"2017","unstructured":"Ahmad M, Bashir AK, Khan AM (2017) Metric similarity regularizer to enhance pixel similarity performance for hyperspectral unmixing. Optik 140:86\u201395","journal-title":"Optik"},{"key":"6519_CR2","doi-asserted-by":"crossref","unstructured":"Akhtar N, Agarwal N, Burjwal A (2014) K-mean algorithm for image segmentation using neutrosophy. In: 2014 international conference on advances in computing, communications and informatics (ICACCI), IEEE, pp 2417\u20132421","DOI":"10.1109\/ICACCI.2014.6968286"},{"key":"6519_CR3","doi-asserted-by":"publisher","first-page":"31010","DOI":"10.1109\/ACCESS.2019.2899323","volume":"7","author":"A Alabdulatif","year":"2019","unstructured":"Alabdulatif A, Khalil I, Yi X, Guizani M (2019) Secure edge of things for smart healthcare surveillance framework. IEEE Access 7:31010\u201331021","journal-title":"IEEE Access"},{"issue":"4","key":"6519_CR4","doi-asserted-by":"publisher","first-page":"273","DOI":"10.26599\/BDMA.2019.9020012","volume":"2","author":"B Alkouz","year":"2019","unstructured":"Alkouz B, Al Aghbari Z, Abawajy JH (2019) Tweetluenza: predicting flu trends from twitter data. Big Data Min. Anal. 2(4):273\u2013287","journal-title":"Big Data Min. Anal."},{"issue":"3","key":"6519_CR5","doi-asserted-by":"publisher","first-page":"924","DOI":"10.1109\/TBME.2019.2924398","volume":"67","author":"IC Ang","year":"2019","unstructured":"Ang IC, Fox M, Polk JD, Kersh ME (2019) An algorithm for automated separation of trabecular bone from variably thick cortices in high-resolution computed tomography data. IEEE Trans Biomed Eng 67(3):924\u2013930","journal-title":"IEEE Trans Biomed Eng"},{"key":"6519_CR6","doi-asserted-by":"crossref","unstructured":"Areeckal AS, Sam M, David SS (2018) Computerized radiogrammetry of third metacarpal using watershed and active appearance model. In: 2018 IEEE international conference on industrial technology (ICIT), IEEE, 2018, pp 1490\u20131495","DOI":"10.1109\/ICIT.2018.8352401"},{"key":"6519_CR7","doi-asserted-by":"publisher","first-page":"254","DOI":"10.1109\/RBME.2018.2852620","volume":"12","author":"AS Areeckal","year":"2018","unstructured":"Areeckal AS, Kocher M (2018) Current and emerging diagnostic imaging-based techniques for assessment of osteoporosis and fracture risk. IEEE Rev Biomed Eng 12:254\u2013268","journal-title":"IEEE Rev Biomed Eng"},{"issue":"12","key":"6519_CR8","first-page":"4702","volume":"84","author":"LK Bachrach","year":"1999","unstructured":"Bachrach LK, Hastie T, Wang M-C, Narasimhan B, Marcus R (1999) Bone mineral acquisition in healthy Asian, Hispanic, black, and Caucasian youth: a longitudinal study. J Clin Endocrinol Metab 84(12):4702\u20134712","journal-title":"J Clin Endocrinol Metab"},{"key":"6519_CR9","doi-asserted-by":"crossref","unstructured":"Bharti JP, Mishra P, Sathishkumar VE, Cho Y, Samui P (2021) Slope stability analysis using Rf, Gbm, Cart, Bt and Xgboost. Geotech Geol Eng, 39(5): 3741\u20133752","DOI":"10.1007\/s10706-021-01721-2"},{"issue":"5","key":"6519_CR10","doi-asserted-by":"publisher","first-page":"1229","DOI":"10.1109\/TMI.2016.2528821","volume":"35","author":"T Brosch","year":"2016","unstructured":"Brosch T, Tang LY, Yoo Y, Li DK, Traboulsee A, Tam R (2016) Deep 3D convolutional encoder networks with shortcuts for multiscale feature integration applied to multiple sclerosis lesion segmentation. IEEE Trans Med Imaging 35(5):1229\u20131239","journal-title":"IEEE Trans Med Imaging"},{"issue":"5","key":"6519_CR11","doi-asserted-by":"publisher","first-page":"2","DOI":"10.1147\/JRD.2012.2197132","volume":"56","author":"DL Buckeridge","year":"2012","unstructured":"Buckeridge DL, Izadi M, Shaban-Nejad A, Mondor L, Jauvin C, Dube L, Tamblyn R (2012) An infrastructure for real-time population health assessment and monitoring. IBM J Res Dev 56(5):2\u20131","journal-title":"IBM J Res Dev"},{"key":"6519_CR12","doi-asserted-by":"crossref","unstructured":"Byeon W, Breuel TM, Raue F, Liwicki M (2015) Scene labeling with lstm recurrent neural networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 3547\u20133555","DOI":"10.1109\/CVPR.2015.7298977"},{"key":"6519_CR13","doi-asserted-by":"publisher","first-page":"368","DOI":"10.1590\/1806-9282.62.04.368","volume":"62","author":"HWS Cabral","year":"2016","unstructured":"Cabral HWS, Andolphi BFG, Ferreira BVC, Alves DCF, Morelato RL, Chambo A, Borges LS (2016) The use of biomarkers in clinical osteoporosis. Revista da Associa\u00e7\u00e3o M\u00e9dica Brasileira 62:368\u2013376","journal-title":"Revista da Associa\u00e7\u00e3o M\u00e9dica Brasileira"},{"issue":"4","key":"6519_CR14","doi-asserted-by":"publisher","first-page":"834","DOI":"10.1109\/TPAMI.2017.2699184","volume":"40","author":"L-C Chen","year":"2017","unstructured":"Chen L-C, Papandreou G, Kokkinos I, Murphy K, Yuille AL (2017) Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE Trans Pattern Anal Mach Intell 40(4):834\u2013848","journal-title":"IEEE Trans Pattern Anal Mach Intell"},{"key":"6519_CR15","doi-asserted-by":"publisher","first-page":"124596","DOI":"10.1109\/ACCESS.2019.2938402","volume":"7","author":"Bo Chen","year":"2019","unstructured":"Chen Bo, Qiuhao Xu, Wang L, Leung S, Chung J, Li S (2019) An automated and accurate spine curve analysis system. IEEE Access 7:124596\u2013124605","journal-title":"IEEE Access"},{"key":"6519_CR16","doi-asserted-by":"crossref","unstructured":"Cire\u015fan DC, Giusti A, Gambardella LM, Schmidhuber J (2013) Mitosis detection in breast cancer histology images with deep neural networks. In: International conference on medical image computing and computer-assisted intervention, Springer, Berlin, pp 411\u2013418","DOI":"10.1007\/978-3-642-40763-5_51"},{"issue":"5","key":"6519_CR17","doi-asserted-by":"publisher","first-page":"1114","DOI":"10.1002\/jbmr.2766","volume":"31","author":"JJ de Jong","year":"2016","unstructured":"de Jong JJ, Heyer FL, Arts JJ, Poeze M, Keszei AP, Willems PC, van den Bergh JP (2016) Fracture repair in the distal radius in postmenopausal women: a follow-up 2 years Postfracture using HRpQCT. J Bone Min Res 31(5):1114\u20131122","journal-title":"J Bone Min Res"},{"issue":"5","key":"6519_CR18","doi-asserted-by":"publisher","first-page":"629","DOI":"10.1007\/s00198-006-0297-5","volume":"18","author":"A Diez-Perez","year":"2007","unstructured":"Diez-Perez A, Gonzalez-Macias J, Marin F, Abizanda M, Alvarez R, Gimeno A, Pegenaute E, Vila J (2007) Prediction of absolute risk of non-spinal fractures using clinical risk factors and heel quantitative ultrasound. Osteoporos Int 18(5):629\u2013639","journal-title":"Osteoporos Int"},{"issue":"9","key":"6519_CR19","doi-asserted-by":"publisher","first-page":"2151","DOI":"10.1109\/TMI.2019.2894322","volume":"38","author":"J Duan","year":"2019","unstructured":"Duan J, Bello G, Schlemper J, Bai W, Dawes TJ, Biffi C, Rueckert D (2019) Automatic 3D bi-ventricular segmentation of cardiac images by a shape-refined multi-task deep learning approach. IEEE Trans Med Imaging 38(9):2151\u20132164","journal-title":"IEEE Trans Med Imaging"},{"issue":"9","key":"6519_CR20","doi-asserted-by":"publisher","first-page":"3888","DOI":"10.1109\/TIP.2012.2199126","volume":"21","author":"Y Fang","year":"2012","unstructured":"Fang Y, Chen Z, Lin W, Lin C-W (2012) Saliency detection in the compressed domain for adaptive image retargeting. IEEE Trans Image Process 21(9):3888\u20133901","journal-title":"IEEE Trans Image Process"},{"issue":"6","key":"6519_CR21","doi-asserted-by":"publisher","first-page":"2625","DOI":"10.1109\/TIP.2014.2305100","volume":"23","author":"Y Fang","year":"2014","unstructured":"Fang Y, Wang J, Narwaria M, Le Callet P, Lin W (2014) Saliency detection for stereoscopic images. IEEE Trans Image Process 23(6):2625\u20132636","journal-title":"IEEE Trans Image Process"},{"issue":"1","key":"6519_CR22","doi-asserted-by":"publisher","first-page":"386","DOI":"10.1109\/TIP.2016.2624198","volume":"26","author":"A Farag","year":"2016","unstructured":"Farag A, Le Lu, Roth HR, Liu J, Turkbey E, Summers RM (2016) A bottom-up approach for pancreas segmentation using cascaded superpixels and (deep) image patch labeling. IEEE Trans Image Process 26(1):386\u2013399","journal-title":"IEEE Trans Image Process"},{"key":"6519_CR23","unstructured":"Fibrous dysplasia|Genetic and Rare Diseases Information Center (GARD) \u2013 an NCATS Program (nih.gov)."},{"issue":"2","key":"6519_CR24","first-page":"71","volume":"3","author":"WA Fourati","year":"2011","unstructured":"Fourati WA, Bouhlel MS (2011) Trabecular bone image segmentation using iterative watershed and multi resolution analysis. Int J Bio-Sci Bio-Technol 3(2):71\u201382","journal-title":"Int J Bio-Sci Bio-Technol"},{"key":"6519_CR25","doi-asserted-by":"crossref","unstructured":"Ghosh S, Raja'S A, Chaudhary V, Dhillon G (2011) Automatic lumbar vertebra segmentation from clinical CT for wedge compression fracture diagnosis. In: Medical imaging 2011: computer-aided diagnosis, 7963, p. 796303","DOI":"10.1117\/12.878055"},{"issue":"10","key":"6519_CR26","doi-asserted-by":"publisher","first-page":"2539","DOI":"10.1109\/TIM.2010.2058210","volume":"59","author":"D Giordano","year":"2010","unstructured":"Giordano D, Spampinato C, Scarciofalo G, Leonardi R (2010) An automatic system for skeletal bone age measurement by robust processing of carpal and epiphysial\/metaphysial bones. IEEE Trans Instrum Meas 59(10):2539\u20132553","journal-title":"IEEE Trans Instrum Meas"},{"key":"6519_CR27","unstructured":"Gonzalez RC, Richard EW (2002) Digital image processing"},{"issue":"5","key":"6519_CR28","doi-asserted-by":"publisher","first-page":"1351","DOI":"10.1109\/TIP.2010.2092436","volume":"20","author":"G Guarnieri","year":"2010","unstructured":"Guarnieri G, Marsi S, Ramponi G (2010) High dynamic range image display with halo and clipping prevention. IEEE Trans Image Process 20(5):1351\u20131362","journal-title":"IEEE Trans Image Process"},{"issue":"7","key":"6519_CR29","doi-asserted-by":"publisher","first-page":"1529","DOI":"10.1109\/TUFFC.2008.829","volume":"55","author":"D Hans","year":"2008","unstructured":"Hans D, Krieg M-A (2008) The clinical use of quantitative ultrasound (QUS) in the detection and management of osteoporosis. IEEE Trans Ultrason Ferroelectr Freq Control 55(7):1529\u20131538","journal-title":"IEEE Trans Ultrason Ferroelectr Freq Control"},{"issue":"3","key":"6519_CR30","doi-asserted-by":"publisher","first-page":"251","DOI":"10.1007\/s00198-002-1358-z","volume":"14","author":"D Hans","year":"2003","unstructured":"Hans D, Hartl F, Krieg MA (2003) Device-specific weighted T-score for two quantitative ultrasounds: operational propositions for the management of osteoporosis for 65 years and older women in Switzerland. Osteoporos Int 14(3):251\u2013258","journal-title":"Osteoporos Int"},{"issue":"6","key":"6519_CR31","first-page":"e361","volume":"30","author":"H Hassan","year":"2019","unstructured":"Hassan H, Bashir AK, Abbasi R, Ahmad W, Luo B (2019) Single image defocus estimation by modified gaussian function. Trans Emerg Telecommun Technol 30(6):e361","journal-title":"Trans Emerg Telecommun Technol"},{"issue":"5","key":"6519_CR32","doi-asserted-by":"publisher","first-page":"1555","DOI":"10.1007\/s11554-020-00953-4","volume":"18","author":"H Hassan","year":"2021","unstructured":"Hassan H, Bashir AK, Ahmad M, Menon VG, Afridi IU, Nawaz R, Luo B (2021) Real-time image dehazing by superpixels segmentation and guidance filter. J Real-Time Image Process 18(5):1555\u20131575","journal-title":"J Real-Time Image Process"},{"key":"6519_CR33","doi-asserted-by":"crossref","unstructured":"He K, Gkioxari G, Doll\u00e1r P, Girshick R (2017) Mask r-cnn. In: Proceedings of the IEEE international conference on computer vision, pp 2961\u20132969","DOI":"10.1109\/ICCV.2017.322"},{"key":"6519_CR34","doi-asserted-by":"publisher","first-page":"12386","DOI":"10.1109\/ACCESS.2019.2893063","volume":"7","author":"H Huang","year":"2019","unstructured":"Huang H, Meng F, Zhou S, Jiang F, Manogaran G (2019) Brain image segmentation based on FCM clustering algorithm and rough set. IEEE Access 7:12386\u201312396","journal-title":"IEEE Access"},{"issue":"2","key":"6519_CR35","doi-asserted-by":"publisher","first-page":"137","DOI":"10.1109\/TMI.2005.861705","volume":"25","author":"JA Kennedy","year":"2006","unstructured":"Kennedy JA, Israel O, Frenkel A, Bar-Shalom R, Azhari H (2006) Super-resolution in PET imaging. IEEE Trans Med Imaging 25(2):137\u2013147","journal-title":"IEEE Trans Med Imaging"},{"key":"6519_CR36","doi-asserted-by":"crossref","unstructured":"Korfiatis, Vasileios Ch, Simone Tassani, and George K. Matsopoulos. \"A new Ensemble Classification System for fracture zone prediction using imbalanced micro-CT bone morphometrical data.\"\u00a0IEEE journal of biomedical and health informatics\u00a022, no. 4 2017: 1189\u20131196.","DOI":"10.1109\/JBHI.2017.2723463"},{"issue":"4","key":"6519_CR37","doi-asserted-by":"publisher","first-page":"528","DOI":"10.1109\/TITB.2005.847511","volume":"9","author":"VG Koutkias","year":"2005","unstructured":"Koutkias VG, Chouvarda I, Maglaveras N (2005) A multiagent system enhancing home-care health services for chronic disease management. IEEE Trans Inf Technol Biomed 9(4):528\u2013537","journal-title":"IEEE Trans Inf Technol Biomed"},{"key":"6519_CR38","doi-asserted-by":"crossref","unstructured":"Krishnamoorthy N, Prasad LN, Kumar CP, Subedi B, Abraha HB, Sathishkumar VE (2021) Rice leaf diseases prediction using deep neural networks with transfer learning. Environ Res, 198: 111275","DOI":"10.1016\/j.envres.2021.111275"},{"issue":"1","key":"6519_CR39","doi-asserted-by":"publisher","first-page":"31","DOI":"10.1109\/JBHI.2016.2635663","volume":"21","author":"A Kumar","year":"2016","unstructured":"Kumar A, Kim J, Lyndon D, Fulham M, Feng D (2016) An ensemble of fine-tuned convolutional neural networks for medical image classification. IEEE J Biomed Health Inform 21(1):31\u201340","journal-title":"IEEE J Biomed Health Inform"},{"issue":"2","key":"6519_CR40","doi-asserted-by":"publisher","first-page":"328","DOI":"10.1109\/83.551705","volume":"6","author":"SH Kwok","year":"1997","unstructured":"Kwok SH, Constantinides AG (1997) A fast recursive shortest spanning tree for image segmentation and edge detection. IEEE Trans Image Process 6(2):328\u2013332","journal-title":"IEEE Trans Image Process"},{"key":"6519_CR41","doi-asserted-by":"publisher","first-page":"120597","DOI":"10.1109\/ACCESS.2020.3006335","volume":"8","author":"SB Kwon","year":"2020","unstructured":"Kwon SB, Han HS, Lee MC, Kim HC, Ku Y (2020) Machine learning-based automatic classification of knee osteoarthritis severity using gait data and radiographic images. IEEE Access 8:120597\u2013120603","journal-title":"IEEE Access"},{"issue":"7553","key":"6519_CR42","doi-asserted-by":"publisher","first-page":"436","DOI":"10.1038\/nature14539","volume":"521","author":"Y LeCun","year":"2015","unstructured":"LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436. https:\/\/doi.org\/10.1038\/nature14539","journal-title":"Nature"},{"key":"6519_CR43","unstructured":"Lee CY, Saining X, Patrick G, Zhengyou Z, Zhuowen T (2015) Deeply-supervised nets. In: Artificial intelligence and statistics, PMLR, pp 562\u2013570"},{"key":"6519_CR44","doi-asserted-by":"crossref","unstructured":"Li Y, Li G (2009) Fuzzy C-means cluster segmentation algorithm based on modified membership. In: International symposium on neural networks, Springer, Berlin, 2009, pp 135\u2013144","DOI":"10.1007\/978-3-642-01510-6_16"},{"key":"6519_CR45","doi-asserted-by":"publisher","DOI":"10.1109\/JBHI.2021.3075995","author":"H Li","year":"2021","unstructured":"Li H, Yu K, Liu B, Feng C, Qin Z, Srivastava G (2021) An efficient ciphertext-policy weighted attribute-based encryption for the internet of health things. IEEE J Biomed Health Inform. https:\/\/doi.org\/10.1109\/JBHI.2021.3075995","journal-title":"IEEE J Biomed Health Inform"},{"issue":"5","key":"6519_CR46","doi-asserted-by":"publisher","first-page":"1094","DOI":"10.1109\/TMI.2016.2646698","volume":"36","author":"H-H Lin","year":"2016","unstructured":"Lin H-H, Peng S-L, Jay Wu, Shih T-Y, Chuang K-S, Shih C-T (2016) A novel two-compartment model for calculating bone volume fractions and bone mineral densities from computed tomography images. IEEE Trans Med Imaging 36(5):1094\u20131105","journal-title":"IEEE Trans Med Imaging"},{"key":"6519_CR47","doi-asserted-by":"crossref","unstructured":"Lin TY, Doll\u00e1r P, Girshick R, He K, Hariharan B, Belongie S (2017) Feature pyramid networks for object detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 2117\u20132125","DOI":"10.1109\/CVPR.2017.106"},{"issue":"7","key":"6519_CR48","doi-asserted-by":"publisher","first-page":"2057","DOI":"10.1109\/TBME.2014.2313564","volume":"61","author":"Y Liu","year":"2014","unstructured":"Liu Y, Jin D, Li C, Janz KF, Burns TL, Torner JC, Levy SM, Saha PK (2014) A robust algorithm for thickness computation at low resolution and its application to in vivo trabecular bone CT imaging. IEEE Trans Biomed Eng 61(7):2057\u20132069","journal-title":"IEEE Trans Biomed Eng"},{"key":"6519_CR49","doi-asserted-by":"crossref","unstructured":"Long J, Evan S, Trevor D (2015) Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 3431\u20133440","DOI":"10.1109\/CVPR.2015.7298965"},{"issue":"6","key":"6519_CR50","doi-asserted-by":"publisher","first-page":"467","DOI":"10.1007\/s001980070088","volume":"11","author":"AC Looker","year":"2000","unstructured":"Looker AC, Bauer DC, Chesnut Iii CH, Gundberg CM, Hochberg MC, Klee G, Bell NH (2000) Clinical use of biochemical markers of bone remodeling: current status and future directions. Osteoporosis Int 11(6):467\u2013480","journal-title":"Osteoporosis Int"},{"key":"6519_CR51","doi-asserted-by":"publisher","first-page":"46278","DOI":"10.1109\/ACCESS.2019.2902252","volume":"7","author":"PK Mallick","year":"2019","unstructured":"Mallick PK, Ryu SH, Satapathy SK, Mishra S, Nguyen GN, Tiwari P (2019) Brain MRI image classification for cancer detection using deep wavelet autoencoder-based deep neural network. IEEE Access 7:46278\u201346287","journal-title":"IEEE Access"},{"issue":"2","key":"6519_CR52","doi-asserted-by":"publisher","first-page":"260","DOI":"10.1109\/TMI.2009.2021946","volume":"29","author":"R Manzke","year":"2009","unstructured":"Manzke R, Meyer C, Ecabert O, Peters J, Noordhoek NJ, Thiagalingam A, Reddy VY, Chan RC, Weese J (2009) Automatic segmentation of rotational X-ray images for anatomic intra-procedural surface generation in atrial fibrillation ablation procedures. IEEE Trans Med Imaging 29(2):260\u2013272","journal-title":"IEEE Trans Med Imaging"},{"issue":"3","key":"6519_CR53","doi-asserted-by":"publisher","first-page":"228","DOI":"10.1007\/BF02556569","volume":"44","author":"R Mazess","year":"1989","unstructured":"Mazess R, Collick B, Trempe J, Barden H, Hanson J (1989) Performance evaluation of a dual-energy X-ray bone densitometer. Calcif Tissue Int 44(3):228\u2013232","journal-title":"Calcif Tissue Int"},{"key":"6519_CR54","doi-asserted-by":"crossref","unstructured":"Mehra R, Pachpor K, Kottilingam K, Saranya A (2020) An initiative to prevent japanese encephalitis using genetic algorithm and artificial neural network. In: 2020 international conference on computational intelligence (ICCI), pp 142\u2013148. IEEE","DOI":"10.1109\/ICCI51257.2020.9247744"},{"issue":"1","key":"6519_CR55","doi-asserted-by":"publisher","first-page":"113","DOI":"10.1016\/0165-1684(94)90060-4","volume":"38","author":"F Meyer","year":"1994","unstructured":"Meyer F (1994) Topographic distance and watershed lines. Signal Process 38(1):113\u2013125","journal-title":"Signal Process"},{"key":"6519_CR56","doi-asserted-by":"crossref","unstructured":"Milletari F, Navab N, Ahmadi SA (2016) V-net: fully convolutional neural networks for volumetric medical image segmentation. In: 2016 fourth international conference on 3D vision (3DV), pp 565\u2013571. IEEE","DOI":"10.1109\/3DV.2016.79"},{"key":"6519_CR57","doi-asserted-by":"crossref","unstructured":"Minaee S, Boykov YY, Porikli F, Plaza AJ, Kehtarnavaz N, Terzopoulos D (2021) Image segmentation using deep learning: a survey. IEEE Trans Pattern Anal Mach Intell.","DOI":"10.1109\/TPAMI.2021.3059968"},{"issue":"6","key":"6519_CR58","doi-asserted-by":"publisher","first-page":"368","DOI":"10.1007\/s00223-008-9174-x","volume":"83","author":"A Nazarian","year":"2008","unstructured":"Nazarian A, von Stechow D, Zurakowski D, M\u00fcller R, Snyder BD (2008) Bone volume fraction explains the variation in strength and stiffness of cancellous bone affected by metastatic cancer and osteoporosis. Calcified Tissue Int 83(6):368\u2013379","journal-title":"Calcified Tissue Int"},{"key":"6519_CR59","doi-asserted-by":"publisher","first-page":"33795","DOI":"10.1109\/ACCESS.2019.2904094","volume":"7","author":"N-Q Nguyen","year":"2019","unstructured":"Nguyen N-Q, Lee S-W (2019) Robust boundary segmentation in medical images using a consecutive deep encoder-decoder network. Ieee Access 7:33795\u201333808","journal-title":"Ieee Access"},{"issue":"12","key":"6519_CR60","doi-asserted-by":"publisher","first-page":"1051","DOI":"10.1007\/s001980070027","volume":"11","author":"CF Njeh","year":"2000","unstructured":"Njeh CF, Hans D, Li J, Fan B, Fuerst T, He YQ, Tsuda-Futami E, Lu Y, Wu CY, Genant HK (2000) Comparison of six calcaneal quantitative ultrasound devices: precision and hip fracture discrimination. Osteoporos Int 11(12):1051\u20131062","journal-title":"Osteoporos Int"},{"issue":"11","key":"6519_CR61","doi-asserted-by":"publisher","first-page":"110701","DOI":"10.1118\/1.4823762","volume":"40","author":"MA O\u2019Reilly","year":"2013","unstructured":"O\u2019Reilly MA, Hynynen K (2013) A super-resolution ultrasound method for brain vascular mapping. Medical Phys 40(11):110701","journal-title":"Medical Phys"},{"issue":"2","key":"6519_CR62","first-page":"516","volume":"102","author":"C Ohlsson","year":"2017","unstructured":"Ohlsson C, Sundh D, Wallerek A, Nilsson M, Karlsson M, Johansson H, Mellstr\u00f6m D, Lorentzon M (2017) Cortical bone area predicts incident fractures independently of areal bone mineral density in older men. J Clin Endocrinol Metab 102(2):516\u2013524","journal-title":"J Clin Endocrinol Metab"},{"key":"6519_CR63","doi-asserted-by":"publisher","first-page":"136","DOI":"10.1016\/j.media.2019.04.009","volume":"55","author":"I Oksuz","year":"2019","unstructured":"Oksuz I, Ruijsink B, Puyol-Ant\u00f3n E, Clough JR, Cruz G, Bustin A, Prieto C, Botnar R, Rueckert D, Schnabel JA, King AP (2019) Automatic CNN-based detection of cardiac MR motion artefacts using k-space data augmentation and curriculum learning. Med Image Anal 55:136\u2013147","journal-title":"Med Image Anal"},{"issue":"2","key":"6519_CR64","doi-asserted-by":"publisher","first-page":"384","DOI":"10.1109\/TMI.2017.2743464","volume":"37","author":"O Oktay","year":"2017","unstructured":"Oktay O, Ferrante E, Kamnitsas K, Heinrich M, Bai W, Caballero J, Rueckert D (2017) Anatomically constrained neural networks (ACNNs): application to cardiac image enhancement and segmentation. IEEE Trans Med Imaging 37(2):384\u2013395","journal-title":"IEEE Trans Med Imaging"},{"issue":"4","key":"6519_CR65","doi-asserted-by":"publisher","first-page":"1216","DOI":"10.1109\/JBHI.2015.2404829","volume":"19","author":"S Ram","year":"2015","unstructured":"Ram S, Zhang W, Williams M, Pengetnze Y (2015) Predicting asthma-related emergency department visits using big data. IEEE J Biomed Health Inform 19(4):1216\u20131223","journal-title":"IEEE J Biomed Health Inform"},{"issue":"1","key":"6519_CR66","doi-asserted-by":"publisher","first-page":"112","DOI":"10.1109\/TITB.2011.2171978","volume":"16","author":"VSH Rao","year":"2011","unstructured":"Rao VSH, Kumar MN (2011) A new intelligence-based approach for computer-aided diagnosis of dengue fever. IEEE Trans Inf Technol Biomed 16(1):112\u2013118","journal-title":"IEEE Trans Inf Technol Biomed"},{"issue":"5","key":"6519_CR67","doi-asserted-by":"publisher","first-page":"2030","DOI":"10.1109\/JBHI.2018.2876916","volume":"23","author":"X Ren","year":"2018","unstructured":"Ren X, Li T, Yang X, Wang S, Ahmad S, Xiang L, Wang Q (2018) Regression convolutional neural network for automated pediatric bone age assessment from hand radiograph. IEEE J Biomed Health Inform 23(5):2030\u20132038","journal-title":"IEEE J Biomed Health Inform"},{"key":"6519_CR68","unstructured":"Ren S, He K, Girshick R, Sun J (2015) Faster r-cnn: towards real-time object detection with region proposal networks. arXiv preprint https:\/\/arxiv.org\/abs\/1506.01497\u00a02015"},{"key":"6519_CR69","first-page":"29","volume":"4","author":"SS Ribeiro","year":"2014","unstructured":"Ribeiro SS (2014) Using SimpleCV for seed metadata extraction into XML document. Iberoamerican J Appl Comput 4:29","journal-title":"Iberoamerican J Appl Comput"},{"key":"6519_CR70","doi-asserted-by":"crossref","unstructured":"Ronneberger O, Fischer P, Brox T (2015) U-net: convolutional networks for biomedical image segmentation. In: International conference on medical image computing and computer-assisted intervention, pp 234\u2013241. Springer, Cham","DOI":"10.1007\/978-3-319-24574-4_28"},{"issue":"11","key":"6519_CR71","doi-asserted-by":"publisher","first-page":"1821","DOI":"10.1109\/TMI.2010.2050779","volume":"29","author":"PK Saha","year":"2010","unstructured":"Saha PK, Yan Xu, Duan H, Heiner A, Liang G (2010) Volumetric topological analysis: a novel approach for trabecular bone classification on the continuum between plates and rods. IEEE Trans Med Imaging 29(11):1821\u20131838","journal-title":"IEEE Trans Med Imaging"},{"key":"6519_CR72","doi-asserted-by":"publisher","first-page":"81494","DOI":"10.1109\/ACCESS.2019.2923008","volume":"7","author":"AFM Saif","year":"2019","unstructured":"Saif AFM, Shahnaz C, Zhu WP, Ahmad MO (2019) Abnormality detection in musculoskeletal radiographs using capsule network. IEEE Access 7:81494\u201381503","journal-title":"IEEE Access"},{"issue":"2","key":"6519_CR73","doi-asserted-by":"publisher","first-page":"194","DOI":"10.7763\/LNSE.2013.V1.44","volume":"1","author":"P Santhoshini","year":"2013","unstructured":"Santhoshini P, Tamilselvi R, Sivakumar R (2013) Automatic segmentation of femur bone features and analysis of osteoporosis. Lect Notes Softw Eng 1(2):194","journal-title":"Lect Notes Softw Eng"},{"issue":"5","key":"6519_CR74","doi-asserted-by":"publisher","first-page":"951","DOI":"10.1109\/TPAMI.2015.2473846","volume":"38","author":"M Seyedhosseini","year":"2015","unstructured":"Seyedhosseini M, Tasdizen T (2015) Semantic image segmentation with contextual hierarchical models. IEEE Trans Pattern Anal Mach Intell 38(5):951\u2013964","journal-title":"IEEE Trans Pattern Anal Mach Intell"},{"key":"6519_CR75","doi-asserted-by":"crossref","unstructured":"Su H, Xing F, Kong X, Xie Y, Zhang S, Yang L (2015) Robust cell detection and segmentation in histopathological images using sparse reconstruction and stacked denoising autoencoders. In: International conference on medical image computing and computer-assisted intervention, Springer, Cham, pp 383\u2013390","DOI":"10.1007\/978-3-319-24574-4_46"},{"issue":"6","key":"6519_CR76","doi-asserted-by":"publisher","first-page":"2000","DOI":"10.1109\/TMI.2019.2962792","volume":"39","author":"L Sun","year":"2019","unstructured":"Sun L, Shao W, Zhang D, Liu M (2019) Anatomical attention guided deep networks for ROI segmentation of brain MR images. IEEE Trans Med Imaging 39(6):2000\u20132012","journal-title":"IEEE Trans Med Imaging"},{"key":"6519_CR77","doi-asserted-by":"publisher","DOI":"10.1109\/TII.2021.3070544","author":"Y Sun","year":"2021","unstructured":"Sun Y, Liu J, Yu K, Alazab M, Lin K (2021) PMRSS: privacy-preserving medical record searching scheme for intelligent diagnosis in IoT healthcare. IEEE Trans Ind Inform. https:\/\/doi.org\/10.1109\/TII.2021.3070544","journal-title":"IEEE Trans Ind Inform."},{"key":"6519_CR78","doi-asserted-by":"publisher","DOI":"10.1109\/TNSE.2021.3101842","author":"L Tan","year":"2021","unstructured":"Tan L, Yu K, Shi N, Yang C, Wei W, Lu H (2021) towards secure and privacy-preserving data sharing for COVID-19 medical records: a blockchain-empowered approach. IEEE Trans Netw Sci Eng. https:\/\/doi.org\/10.1109\/TNSE.2021.3101842","journal-title":"IEEE Trans Netw Sci Eng"},{"issue":"6","key":"6519_CR79","doi-asserted-by":"publisher","first-page":"306","DOI":"10.1002\/cmr.a.21249","volume":"40","author":"E VanReeth","year":"2012","unstructured":"VanReeth E, Tham IW, Tan CH, Poh CL (2012) Super-resolution in magnetic resonance imaging: a review. Concepts Magn Resonance Part A 40(6):306\u2013325","journal-title":"Concepts Magn Resonance Part A"},{"key":"6519_CR80","doi-asserted-by":"publisher","first-page":"188538","DOI":"10.1109\/ACCESS.2020.3030194","volume":"8","author":"SS Vedaei","year":"2020","unstructured":"Vedaei SS, Fotovvat A, Mohebbian MR, Rahman GM, Wahid KA, Babyn P, Sami R (2020) COVID-SAFE: an IoT-based system for automated health monitoring and surveillance in post-pandemic life. IEEE Access 8:188538\u2013188551","journal-title":"IEEE Access"},{"issue":"7","key":"6519_CR81","doi-asserted-by":"publisher","first-page":"1559","DOI":"10.1109\/TPAMI.2018.2840695","volume":"41","author":"G Wang","year":"2018","unstructured":"Wang G, Zuluaga MA, Li W, Pratt R, Patel PA, Aertsen M, Vercauteren T (2018) DeepIGeoS: a deep interactive geodesic framework for medical image segmentation. IEEE Trans Pattern Anal Mach Intell 41(7):1559\u20131572","journal-title":"IEEE Trans Pattern Anal Mach Intell"},{"issue":"12","key":"6519_CR82","doi-asserted-by":"publisher","first-page":"2768","DOI":"10.1109\/TMI.2019.2913184","volume":"38","author":"Yi Wang","year":"2019","unstructured":"Wang Yi, Dou H, Xiaowei Hu, Zhu L, Yang X, Ming Xu, Qin J, Heng P-A, Wang T, Ni D (2019) Deep attentive features for prostate segmentation in 3D transrectal ultrasound. IEEE Trans Med Imaging 38(12):2768\u20132778","journal-title":"IEEE Trans Med Imaging"},{"issue":"8","key":"6519_CR83","doi-asserted-by":"publisher","first-page":"1520","DOI":"10.1359\/jbmr.2001.16.8.1520","volume":"16","author":"FW Wehrli","year":"2001","unstructured":"Wehrli FW, Gomberg BR, Saha PK, Song HK, Hwang SN, Snyder PJ (2001) Digital topological analysis of in vivo magnetic resonance microimages of trabecular bone reveals structural implications of osteoporosis. J Bone Min Res 16(8):1520\u20131531","journal-title":"J Bone Min Res"},{"issue":"10","key":"6519_CR84","doi-asserted-by":"publisher","first-page":"4550","DOI":"10.1109\/TNNLS.2017.2766168","volume":"29","author":"F Xing","year":"2017","unstructured":"Xing F, Xie Y, Su H, Liu F, Yang L (2017) Deep learning in microscopy image analysis: a survey. IEEE Trans Neural Netw Learn Syst 29(10):4550\u20134568","journal-title":"IEEE Trans Neural Netw Learn Syst"},{"key":"6519_CR85","doi-asserted-by":"publisher","first-page":"116106","DOI":"10.1109\/ACCESS.2020.3002835","volume":"8","author":"P Yin","year":"2020","unstructured":"Yin P, Yuan R, Cheng Y, Wu Q (2020) Deep guidance network for biomedical image segmentation. IEEE Access 8:116106\u2013116116","journal-title":"IEEE Access"},{"issue":"3","key":"6519_CR86","doi-asserted-by":"publisher","first-page":"54","DOI":"10.1109\/MWC.001.2000374","volume":"28","author":"K Yu","year":"2021","unstructured":"Yu K, Tan L, Lin L, Cheng X, Yi Z, Sato T (June 2021) Deep-learning-empowered breast cancer auxiliary diagnosis for 5GB remote E-health. IEEE Wirel Commun 28(3):54\u201361. https:\/\/doi.org\/10.1109\/MWC.001.2000374","journal-title":"IEEE Wirel Commun"},{"issue":"7","key":"6519_CR87","doi-asserted-by":"publisher","first-page":"1382","DOI":"10.1109\/TMI.2010.2045767","volume":"29","author":"J Zhang","year":"2010","unstructured":"Zhang J, Yan CH, Chui CK, Ong SH (2010) Accurate measurement of bone mineral density using clinical CT imaging with single energy beam spectral intensity correction. IEEE Trans Med Imaging 29(7):1382\u20131389","journal-title":"IEEE Trans Med Imaging"},{"issue":"6","key":"6519_CR88","doi-asserted-by":"publisher","first-page":"1633","DOI":"10.1109\/JBHI.2017.2705583","volume":"21","author":"L Zhang","year":"2017","unstructured":"Zhang L, Le Lu, Nogues I, Summers RM, Liu S, Yao J (2017a) DeepPap: deep convolutional networks for cervical cell classification. IEEE J Biomed Health Inform 21(6):1633\u20131643","journal-title":"IEEE J Biomed Health Inform"},{"issue":"1","key":"6519_CR89","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1186\/s12864-016-3406-7","volume":"18","author":"Y-Z Zhang","year":"2017","unstructured":"Zhang Y-Z, Yamaguchi R, Imoto S, Miyano S (2017b) Sequence-specific bias correction for RNA-seq data using recurrent neural networks. BMC Genomics 18(1):1\u20136","journal-title":"BMC Genomics"},{"issue":"7","key":"6519_CR90","first-page":"1","volume":"2013","author":"F Zhao","year":"2013","unstructured":"Zhao F, Xie X (2013) An overview of interactive medical image segmentation. Ann BMVA 2013(7):1\u201322","journal-title":"Ann BMVA"},{"key":"6519_CR91","doi-asserted-by":"crossref","unstructured":"Zheng S, Jayasumana S, Romera-Paredes B, Vineet V, Su Z, Du D, Torr PH (2015) Conditional random fields as recurrent neural networks. In: Proceedings of the IEEE international conference on computer vision, pp 1529\u20131537","DOI":"10.1109\/ICCV.2015.179"}],"container-title":["Soft Computing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s00500-021-06519-1.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s00500-021-06519-1\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s00500-021-06519-1.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,2,10]],"date-time":"2023-02-10T12:53:22Z","timestamp":1676033602000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s00500-021-06519-1"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,12,1]]},"references-count":91,"journal-issue":{"issue":"16","published-print":{"date-parts":[[2022,8]]}},"alternative-id":["6519"],"URL":"https:\/\/doi.org\/10.1007\/s00500-021-06519-1","relation":{},"ISSN":["1432-7643","1433-7479"],"issn-type":[{"value":"1432-7643","type":"print"},{"value":"1433-7479","type":"electronic"}],"subject":[],"published":{"date-parts":[[2021,12,1]]},"assertion":[{"value":"29 October 2021","order":1,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"1 December 2021","order":2,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}},{"order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Declarations"}},{"value":"The authors declare no conflict of interest.","order":2,"name":"Ethics","group":{"name":"EthicsHeading","label":"Conflict of interest"}},{"value":"This article does not contain any studies with human participants or animal performed by any of the authors.","order":3,"name":"Ethics","group":{"name":"EthicsHeading","label":"Ethical approval"}},{"value":"This content has been made available to all.","name":"free","label":"Free to read"}]}}