iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://api.crossref.org/works/10.1007/S00422-022-00936-7
{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,6,13]],"date-time":"2024-06-13T22:33:29Z","timestamp":1718318009575},"reference-count":113,"publisher":"Springer Science and Business Media LLC","issue":"4","license":[{"start":{"date-parts":[[2022,6,20]],"date-time":"2022-06-20T00:00:00Z","timestamp":1655683200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0"},{"start":{"date-parts":[[2022,6,20]],"date-time":"2022-06-20T00:00:00Z","timestamp":1655683200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0"}],"funder":[{"name":"Leibniz-Institut f\u00fcr Neurobiologie (LIN)"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Biol Cybern"],"published-print":{"date-parts":[[2022,8]]},"abstract":"Abstract<\/jats:title>Adaptation, the reduction of neuronal responses by repetitive stimulation, is a ubiquitous feature of auditory cortex (AC). It is not clear what causes adaptation, but short-term synaptic depression (STSD) is a potential candidate for the underlying mechanism. In such a case, adaptation can be directly linked with the way AC produces context-sensitive responses such as mismatch negativity and stimulus-specific adaptation observed on the single-unit level. We examined this hypothesis via a computational model based on AC anatomy, which includes serially connected core, belt, and parabelt areas. The model replicates the event-related field (ERF) of the magnetoencephalogram as well as ERF adaptation. The model dynamics are described by excitatory and inhibitory state variables of cell populations, with the excitatory connections modulated by STSD. We analysed the system dynamics by linearising the firing rates and solving the STSD equation using time-scale separation. This allows for characterisation of AC dynamics as a superposition of damped harmonic oscillators, so-called normal modes. We show that repetition suppression of the N1m is due to a mixture of causes, with stimulus repetition modifying both the amplitudes and the frequencies of the normal modes. In this view, adaptation results from a complete reorganisation of AC dynamics rather than a reduction of activity in discrete sources. Further, both the network structure and the balance between excitation and inhibition contribute significantly to the rate with which AC recovers from adaptation. This lifetime of adaptation is longer in the belt and parabelt than in the core area, despite the time constants of STSD being spatially homogeneous. Finally, we critically evaluate the use of a single exponential function to describe recovery from adaptation.\n<\/jats:p>","DOI":"10.1007\/s00422-022-00936-7","type":"journal-article","created":{"date-parts":[[2022,6,20]],"date-time":"2022-06-20T03:15:27Z","timestamp":1655694927000},"page":"475-499","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":5,"title":["Auditory cortex modelled as a dynamical network of oscillators: understanding event-related fields and their adaptation"],"prefix":"10.1007","volume":"116","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-7311-6480","authenticated-orcid":false,"given":"Aida","family":"Hajizadeh","sequence":"first","affiliation":[]},{"given":"Artur","family":"Matysiak","sequence":"additional","affiliation":[]},{"given":"Matthias","family":"Wolfrum","sequence":"additional","affiliation":[]},{"given":"Patrick J. C.","family":"May","sequence":"additional","affiliation":[]},{"given":"Reinhard","family":"K\u00f6nig","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2022,6,20]]},"reference":[{"key":"936_CR1","doi-asserted-by":"publisher","first-page":"220","DOI":"10.1126\/science.275.5297.221","volume":"275","author":"LF Abbott","year":"1997","unstructured":"Abbott LF, Varela JA, Sen K, Nelson SB (1997) Synaptic depression and cortical gain control. Science 275:220\u2013224","journal-title":"Science"},{"key":"936_CR2","doi-asserted-by":"publisher","first-page":"879","DOI":"10.1007\/s11517-015-1296-5","volume":"53","author":"SP Ahlfors","year":"2015","unstructured":"Ahlfors SP, Wreh C (2015) Modelling the effect of dendritic input location on MEG and EEG source dipoles. Med Biol Eng Comput 53:879\u2013887","journal-title":"Med Biol Eng Comput"},{"key":"936_CR3","doi-asserted-by":"publisher","first-page":"149","DOI":"10.1016\/j.neulet.2014.11.029","volume":"585","author":"SP Ahlfors","year":"2015","unstructured":"Ahlfors SP, Jones SR, Ahveninen J, H\u00e4m\u00e4l\u00e4inen MS, Belliveau JW, Bar M (2015) Direction of magnetoencephalography sources associated with feedback and feedforward contributions in a visual object recognition task. Neurosci Lett 585:149\u2013154","journal-title":"Neurosci Lett"},{"key":"936_CR4","first-page":"1","volume":"24","author":"GI Allen","year":"1975","unstructured":"Allen GI, Korn H, Oshima T (1975) The mode of synaptic linkage in the cerebro-ponto-cerebellar pathway of the cat. I. Responses in the branchium pontis. Exp Brain Res 24:1\u201314","journal-title":"Exp Brain Res"},{"key":"936_CR5","doi-asserted-by":"publisher","DOI":"10.1371\/journal.pone.0014071","volume":"5","author":"FM Antunes","year":"2010","unstructured":"Antunes FM, Nelken I, Covey E, Malmierca MS (2010) Stimulus-specific adaptation in the auditory thalamus of the anesthetized rat. PLoS ONE 5:e14071","journal-title":"PLoS ONE"},{"key":"936_CR6","doi-asserted-by":"publisher","first-page":"2638","DOI":"10.1152\/jn.00577.2009","volume":"102","author":"H Asari","year":"2009","unstructured":"Asari H, Zador AM (2009) Long-lasting context dependence constraints neural coding models in rodent auditory cortex. J Neurophysiol 102:2638\u20132656","journal-title":"J Neurophysiol"},{"key":"936_CR7","doi-asserted-by":"publisher","first-page":"695","DOI":"10.1016\/j.neuron.2012.10.038","volume":"76","author":"AM Bastos","year":"2012","unstructured":"Bastos AM, Usrey WM, Adams RA, Mangun GR, Fries P, Friston KJ (2012) Canonical microcircuits for predictive coding. Neuron 76:695\u2013711","journal-title":"Neuron"},{"key":"936_CR8","doi-asserted-by":"publisher","first-page":"R110","DOI":"10.1016\/j.cub.2020.11.054","volume":"31","author":"J Benda","year":"2021","unstructured":"Benda J (2021) Neural adaptation. Curr Biol 31:R110\u2013R116","journal-title":"Curr Biol"},{"key":"936_CR9","doi-asserted-by":"publisher","first-page":"2312","DOI":"10.1523\/JNEUROSCI.4795-04.2005","volume":"25","author":"J Benda","year":"2005","unstructured":"Benda J, Longtin A, Maler L (2005) Spike-frequency adaptation separates transient communication signals from background oscillations. J Neurosci 25:2312\u20132321","journal-title":"J Neurosci"},{"key":"936_CR10","doi-asserted-by":"crossref","unstructured":"Bertrand O, Tallon-Baudry C (2000) Oscillatory gamma activity in humans: a possible role for object representation. Int J Psychophysiol 38:211-233","DOI":"10.1016\/S0167-8760(00)00166-5"},{"key":"936_CR11","doi-asserted-by":"publisher","first-page":"2544","DOI":"10.1093\/cercor\/bhl160","volume":"17","author":"A Brechmann","year":"2007","unstructured":"Brechmann A, Gaschler-Markefski B, Sohr M, Yoneda K, Kaulisch T, Scheich H (2007) Working memory-specific activity in auditory cortex: potential correlates of sequential processing and maintenance. Cereb Cortex 17:2544\u20132552","journal-title":"Cereb Cortex"},{"key":"936_CR12","doi-asserted-by":"publisher","first-page":"1155","DOI":"10.1093\/cercor\/10.12.1155","volume":"10","author":"M Brosch","year":"2000","unstructured":"Brosch M, Schreiner CE (2000) Sequence sensitivity of neurons in cat primary auditory cortex. Cereb Cortex 10:1155\u20131167","journal-title":"Cereb Cortex"},{"key":"936_CR13","doi-asserted-by":"publisher","first-page":"1542","DOI":"10.1152\/jn.1999.82.3.1542","volume":"82","author":"M Brosch","year":"1999","unstructured":"Brosch M, Schulz A, Scheich H (1999) Processing of sound sequences in macaque auditory cortex: response enhancement. J Neurophysiol 82:1542\u20131559","journal-title":"J Neurophysiol"},{"key":"936_CR14","doi-asserted-by":"publisher","first-page":"2513","DOI":"10.1097\/00001756-199412000-00027","volume":"5","author":"TW Budd","year":"1994","unstructured":"Budd TW, Michie PT (1994) Facilitation of the N1 peak of the auditory ERP at short stimulus intervals. NeuroReport 5:2513\u20132516","journal-title":"NeuroReport"},{"key":"936_CR15","doi-asserted-by":"publisher","first-page":"51","DOI":"10.1016\/S0167-8760(98)00040-3","volume":"31","author":"TW Budd","year":"1998","unstructured":"Budd TW, Barry RJ, Gordon E, Rennie C, Michie PT (1998) Decrement of the N1 auditory event-related potential with stimulus repetition: habituation vs. refractoriness. Int J Psychophysiol 31:51\u201368","journal-title":"Int J Psychophysiol"},{"key":"936_CR16","doi-asserted-by":"publisher","first-page":"945","DOI":"10.1121\/1.1911233","volume":"44","author":"RA Butler","year":"1968","unstructured":"Butler RA (1968) Effect of changes in stimulus frequency and intensity on habituation of the human vertex potential. J Acoust Soc Am 44:945\u2013950","journal-title":"J Acoust Soc Am"},{"key":"936_CR17","doi-asserted-by":"publisher","first-page":"162","DOI":"10.1162\/jocn.1993.5.2.162","volume":"5","author":"A Dale","year":"1993","unstructured":"Dale A, Sereno M (1993) Improved localization of cortical activity by combining EEG and MEG with MRI cortical surface reconstruction: a linear approach. J Cogn Neurosci 5:162\u2013176","journal-title":"J Cogn Neurosci"},{"key":"936_CR18","doi-asserted-by":"publisher","first-page":"19154","DOI":"10.1523\/JNEUROSCI.2270-13.2013","volume":"33","author":"SV David","year":"2013","unstructured":"David SV, Shamma SA (2013) Integration over multiple timescales in primary auditory cortex. J Neurosci 33:19154\u201319166","journal-title":"J Neurosci"},{"key":"936_CR19","doi-asserted-by":"publisher","first-page":"1255","DOI":"10.1016\/j.neuroimage.2005.10.045","volume":"30","author":"O David","year":"2006","unstructured":"David O, Kiebel SJ, Harrison LM, Mattout J, Kilner JM, Friston KJ (2006) Dynamic causal modeling of evoked responses in EEG and MEG. Neuroimage 30:1255\u20131272","journal-title":"Neuroimage"},{"key":"936_CR20","doi-asserted-by":"publisher","first-page":"105","DOI":"10.1016\/0013-4694(66)90118-0","volume":"21","author":"H Davis","year":"1966","unstructured":"Davis H, Mast T, Yoshie N, Zerlin N (1966) The slow response of the human cortex to auditory stimuli: recovery process. Electroencephalogr Clin Neurophysiol 21:105\u2013113","journal-title":"Electroencephalogr Clin Neurophysiol"},{"key":"936_CR21","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1016\/S0378-5955(96)00158-X","volume":"103","author":"PG Finlayson","year":"1997","unstructured":"Finlayson PG, Adam TJ (1997) Excitatory and inhibitory response adaptation in the superior olive complex affects binaural acoustic processing. Hear Res 103:1\u201318","journal-title":"Hear Res"},{"key":"936_CR22","doi-asserted-by":"publisher","first-page":"269","DOI":"10.1016\/j.conb.2011.02.003","volume":"21","author":"D Fioravante","year":"2011","unstructured":"Fioravante D, Regehr WG (2011) Short-term forms of presynaptic plasticity. Curr Opin Neurobiol 21:269\u2013274","journal-title":"Curr Opin Neurobiol"},{"key":"936_CR23","doi-asserted-by":"publisher","first-page":"381","DOI":"10.1016\/S0166-2236(00)01835-X","volume":"24","author":"ES Fortune","year":"2001","unstructured":"Fortune ES, Rose GJ (2001) Short-term synaptic plasticity as a temporal filter. Trends Neurosci 24:381\u2013385","journal-title":"Trends Neurosci"},{"key":"936_CR24","doi-asserted-by":"publisher","first-page":"177","DOI":"10.1007\/s00441-015-2176-x","volume":"361","author":"E Friauf","year":"2015","unstructured":"Friauf E, Fischer AU, Fuhr MF (2015) Synaptic plasticity in the auditory system: a review. Cell Tissue Res 361:177\u2013213","journal-title":"Cell Tissue Res"},{"key":"936_CR25","doi-asserted-by":"publisher","first-page":"220","DOI":"10.1016\/j.neuron.2015.09.034","volume":"7","author":"P Fries","year":"2015","unstructured":"Fries P (2015) Rhythms for cognition: communication through coherence. Neuron 7:220\u2013235","journal-title":"Neuron"},{"key":"936_CR26","doi-asserted-by":"publisher","first-page":"815","DOI":"10.1098\/rstb.2005.1622","volume":"360","author":"K Friston","year":"2005","unstructured":"Friston K (2005) A theory of cortical responses. Philos Trans R Soc 360:815\u2013836","journal-title":"Philos Trans R Soc"},{"key":"936_CR27","doi-asserted-by":"publisher","first-page":"1273","DOI":"10.1016\/S1053-8119(03)00202-7","volume":"19","author":"KJ Friston","year":"2003","unstructured":"Friston KJ, Harrison L, Penny W (2003) Dynamic causal modelling. Neuroimage 19:1273\u20131302","journal-title":"Neuroimage"},{"key":"936_CR28","doi-asserted-by":"publisher","first-page":"730","DOI":"10.1016\/j.neuroimage.2017.02.045","volume":"199","author":"KJ Friston","year":"2019","unstructured":"Friston KJ, Preller KH, Mathys C, Cagnan H, Heinzle J, Razi A, Zeidman P (2019) Dynamic causal modelling revisited. Neuroimage 199:730\u2013744","journal-title":"Neuroimage"},{"key":"936_CR29","doi-asserted-by":"publisher","first-page":"571","DOI":"10.1016\/j.neuroimage.2007.03.014","volume":"36","author":"MI Garrido","year":"2007","unstructured":"Garrido MI, Kilner JM, Kiebel SJ, Stephan KE, Friston KJ (2007) Dynamic causal modelling of evoked potentials: a reproducibility study. Neuroimage 36:571\u2013580","journal-title":"Neuroimage"},{"key":"936_CR30","doi-asserted-by":"publisher","first-page":"269","DOI":"10.1016\/j.neuroimage.2009.06.034","volume":"48","author":"MI Garrido","year":"2009","unstructured":"Garrido MI, Kilner JM, Kiebel SJ, Stephan KE, Baldeweg T, Friston KJ (2009) Repetition suppression and plasticity in the human brain. Neuroimage 48:269\u2013279","journal-title":"Neuroimage"},{"key":"936_CR31","doi-asserted-by":"publisher","first-page":"4","DOI":"10.1109\/10.16444","volume":"36","author":"GL Gerstein","year":"1989","unstructured":"Gerstein GL, Bedenbaugh P, Aersten AMHJ (1989) Neural assemblies. IEEE Trans Biomed Eng 36:4\u201314","journal-title":"IEEE Trans Biomed Eng"},{"key":"936_CR32","doi-asserted-by":"publisher","first-page":"643677","DOI":"10.3389\/fpsyg.2021.643677","volume":"12","author":"A Ghiani","year":"2021","unstructured":"Ghiani A, Maniglia M, Battaglini L, Melcher D, Ronconi L (2021) Binding mechanisms in visual perception and their link with neural oscillations: a review of evidence from tACS. Front Psychol 12:643677","journal-title":"Front Psychol"},{"key":"936_CR33","doi-asserted-by":"publisher","first-page":"487","DOI":"10.1038\/nn.3679","volume":"17","author":"V Goudar","year":"2014","unstructured":"Goudar V, Buonomano DV (2014) Useful dynamic regimes emerge in recurrent networks. Nat Neurosci 17:487\u2013489","journal-title":"Nat Neurosci"},{"key":"936_CR34","doi-asserted-by":"crossref","unstructured":"Hackett TA (2015) Anatomic organization of the auditory cortex. Handbook of clinical neurology, vol 2, p 129","DOI":"10.1016\/B978-0-444-62630-1.00002-0"},{"key":"936_CR35","doi-asserted-by":"publisher","first-page":"72","DOI":"10.3389\/fnins.2014.00072","volume":"8","author":"TA Hackett","year":"2014","unstructured":"Hackett TA, de la Mothe LA, Camalier CR, Falchier A, Lakatos P, Kajikawa Y, Schroeder CE (2014) Feedforward and feedback projections of caudal belt and parabelt areas of auditory cortex: refining the hierarchical model. Front Neurosci 8:72","journal-title":"Front Neurosci"},{"key":"936_CR36","doi-asserted-by":"publisher","first-page":"117","DOI":"10.1038\/s41583-018-0094-0","volume":"20","author":"G Hahn","year":"2019","unstructured":"Hahn G, Ponce-Alvarez A, Deco G, Aersten A, Kumar A (2019) Portraits of communication in neural networks. Nat Rev Neurosci 20:117\u2013127","journal-title":"Nat Rev Neurosci"},{"key":"936_CR37","doi-asserted-by":"publisher","first-page":"321","DOI":"10.1007\/s00422-019-00795-9","volume":"113","author":"A Hajizadeh","year":"2019","unstructured":"Hajizadeh A, Matysiak A, May PJC, K\u00f6nig R (2019) Explaining event-related fields by a mechanistic model encapsulating the anatomical structure of auditory cortex. Biol Cybern 113:321\u2013345","journal-title":"Biol Cybern"},{"key":"936_CR38","doi-asserted-by":"publisher","DOI":"10.1111\/psyp.13769","volume":"58","author":"A Hajizadeh","year":"2021","unstructured":"Hajizadeh A, Matysiak A, Brechmann A, K\u00f6nig R, May PJC (2021) Why do humans have unique auditory event-related fields? Evidence from computational modeling and MEG experiments. Psychophysiology 58:e13769","journal-title":"Psychophysiology"},{"key":"936_CR39","doi-asserted-by":"publisher","first-page":"35","DOI":"10.1007\/BF02512476","volume":"32","author":"M H\u00e4m\u00e4l\u00e4inen","year":"1994","unstructured":"H\u00e4m\u00e4l\u00e4inen M, Ilmoniemi R (1994) Interpreting magnetic fields of the brain: minimum norm estimates. Med Biol Eng Comput 32:35\u201342","journal-title":"Med Biol Eng Comput"},{"key":"936_CR40","doi-asserted-by":"publisher","first-page":"413","DOI":"10.1103\/RevModPhys.65.413","volume":"65","author":"M H\u00e4m\u00e4l\u00e4inen","year":"1993","unstructured":"H\u00e4m\u00e4l\u00e4inen M, Hari R, Ilmoniemi RJ, Knuutila J, Lounasmaa OV (1993) Magnetoencephalography-theory, instrumentation, and applications to non-invasive studies of the working human brain. Rev Mod Phys 65:413\u2013497","journal-title":"Rev Mod Phys"},{"key":"936_CR41","doi-asserted-by":"publisher","first-page":"561","DOI":"10.1016\/0013-4694(82)90041-4","volume":"54","author":"R Hari","year":"1982","unstructured":"Hari R, Kaila K, Katila T, Tuomisto T, Varpula T (1982) Interstimulus interval dependence of the auditory vertex response and its magnetic counterpart: implications for their neural generation. Electroencephalogr Clin Neurophysiol 54:561\u2013569","journal-title":"Electroencephalogr Clin Neurophysiol"},{"key":"936_CR42","doi-asserted-by":"publisher","first-page":"625","DOI":"10.1126\/science.3755256","volume":"233","author":"J Hopfield","year":"1986","unstructured":"Hopfield J, Tank D (1986) Computing with neural circuits: a model. Science 233:625\u2013633","journal-title":"Science"},{"key":"936_CR43","doi-asserted-by":"publisher","first-page":"e15441","DOI":"10.7554\/eLife.15441","volume":"5","author":"Y Huang","year":"2016","unstructured":"Huang Y, Matysiak A, Heil P, K\u00f6nig R, Brosch M (2016) Persistent neural activity in auditory cortex is related to auditory working memory in humans and nonhuman primates. eLife 5:e15441","journal-title":"eLife"},{"key":"936_CR44","doi-asserted-by":"publisher","first-page":"37","DOI":"10.1016\/S0013-4694(96)95125-1","volume":"102","author":"T Imada","year":"1997","unstructured":"Imada T, Watanabe M, Mashiko T, Kotani M (1997) The silent period between sounds has a stronger effect than the interstimulus interval on auditory evoked magnetic fields. Electroencephalogr Clin Neurophysiol 102:37\u201345","journal-title":"Electroencephalogr Clin Neurophysiol"},{"key":"936_CR45","doi-asserted-by":"publisher","first-page":"1061","DOI":"10.1016\/S1053-8119(03)00175-7","volume":"19","author":"AA Ioannides","year":"2003","unstructured":"Ioannides AA, Popescu M, Otsuka A, Bezerianos A, Liu L (2003) Magnetoencephalographic evidence of the interhemispheric asymmetry in echoic memory lifetime and its dependence on handedness and gender. Neuroimage 19:1061\u20131075","journal-title":"Neuroimage"},{"key":"936_CR46","unstructured":"Jacquelin J (2009) R\u00e9gressions et \u00e9quations int\u00e9grales. https:\/\/www.scribd.com\/doc\/14674814\/Regressions-et-equations-integrales. Accessed 11 Sept 2020"},{"key":"936_CR47","doi-asserted-by":"publisher","DOI":"10.1016\/j.neuroimage.2020.116734","volume":"216","author":"A Jafarian","year":"2020","unstructured":"Jafarian A, Litvak V, Cagnan H, Friston K, Zeidman P (2020) Comparing dynamic causal models of neurovascular coupling with fMRI and EEG\/MEG. Neuroimage 216:116734","journal-title":"Neuroimage"},{"key":"936_CR48","doi-asserted-by":"publisher","first-page":"357","DOI":"10.1007\/BF00199471","volume":"73","author":"BH Jansen","year":"1995","unstructured":"Jansen BH, Rit VG (1995) Electroencephalogram and visual evoked potential generation in a mathematical model of coupled cortical columns. Biol Cybern 73:357\u2013366","journal-title":"Biol Cybern"},{"key":"936_CR49","doi-asserted-by":"publisher","first-page":"11793","DOI":"10.1073\/pnas.97.22.11793","volume":"97","author":"JH Kaas","year":"2000","unstructured":"Kaas JH, Hackett TA (2000) Subdivisions of auditory cortex and processing streams in primates. Proc Natl Acad Sci USA 97:11793\u201311799","journal-title":"Proc Natl Acad Sci USA"},{"key":"936_CR50","unstructured":"Katznelson RD (1981) Normal modes of the brain: neuroanatomical basis and a physiological theoretical model. In: Nunez PL (ed) Electric fields of the brain: the neurophysics of EEG. Oxford University Press, pp 401\u2013442"},{"key":"936_CR51","doi-asserted-by":"publisher","first-page":"170","DOI":"10.1016\/j.ymssp.2008.04.002","volume":"23","author":"G Kerschen","year":"2009","unstructured":"Kerschen G, Peeters M, Golinval JC, Vakakis AF (2009) Nonlinear normal modes, part I: a useful framework for the structural dynamicist. Mech Syst Signal Process 23:170\u2013194","journal-title":"Mech Syst Signal Process"},{"key":"936_CR52","doi-asserted-by":"publisher","first-page":"1273","DOI":"10.1016\/j.neuroimage.2005.12.055","volume":"30","author":"SJ Kiebel","year":"2006","unstructured":"Kiebel SJ, David O, Friston KJ (2006) Dynamic causal modelling of evoked responses in EEG\/MEG with lead field parameterization. Neuroimage 30:1273\u20131284","journal-title":"Neuroimage"},{"key":"936_CR53","doi-asserted-by":"publisher","first-page":"1866","DOI":"10.1002\/hbm.20775","volume":"30","author":"SJ Kiebel","year":"2009","unstructured":"Kiebel SJ, Garrido MI, Moran R, Chen C-C, Friston KJ (2009) Dynamic causal modelling for EEG\/MEG. Hum Brain Mapp 30:1866\u20131876","journal-title":"Hum Brain Mapp"},{"key":"936_CR54","doi-asserted-by":"publisher","first-page":"698","DOI":"10.1038\/nn.2308","volume":"12","author":"AJ King","year":"2009","unstructured":"King AJ, Nelken I (2009) Unraveling the principles of auditory cortical processing: can we learn from the visual system? Nat Neurosci 12:698\u2013701","journal-title":"Nat Neurosci"},{"key":"936_CR55","doi-asserted-by":"publisher","first-page":"3145","DOI":"10.1016\/j.cub.2021.04.056","volume":"13","author":"T Kohashi","year":"2021","unstructured":"Kohashi T, Lube AJ, Yang JH, Roberts-Gaddipati PS, Carlson BA (2021) Pauses during communication release behavioral habituation through recovery from synaptic depression. Curr Biol 13:3145\u20133152","journal-title":"Curr Biol"},{"key":"936_CR56","doi-asserted-by":"publisher","first-page":"72","DOI":"10.3389\/fncir.2018.00072","volume":"12","author":"P Kudela","year":"2018","unstructured":"Kudela P, Boatman-Reich D, Beeman D, Anderson WS (2018) Modeling neural adaptation in auditory cortex. Front Neural Circuits 12:72","journal-title":"Front Neural Circuits"},{"key":"936_CR57","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-319-12316-5","volume-title":"Multiple time scale dynamics","author":"C Kuehn","year":"2015","unstructured":"Kuehn C (2015) Multiple time scale dynamics. Springer, Cham"},{"key":"936_CR58","doi-asserted-by":"publisher","first-page":"2579","DOI":"10.1162\/NECO_a_00345","volume":"24","author":"TP Lee","year":"2012","unstructured":"Lee TP, Buonomano DV (2012) Unsupervised formation of vocalisation-sensitive neurons: a cortical model based on short-term and homeostatic plasticity. Neural Comput 24:2579\u20132603","journal-title":"Neural Comput"},{"key":"936_CR59","doi-asserted-by":"publisher","first-page":"197","DOI":"10.3389\/neuro.01.1.1.015.2007","volume":"1","author":"A Loebel","year":"2007","unstructured":"Loebel A, Nelken I, Tsodyks M (2007) Processing of sound by population spikes in a model of primary auditory cortex. Front Neurosci 1:197\u2013209","journal-title":"Front Neurosci"},{"key":"936_CR60","doi-asserted-by":"publisher","first-page":"220","DOI":"10.1016\/0168-5597(95)00271-5","volume":"100","author":"N Loveless","year":"1996","unstructured":"Loveless N, Lev\u00e4nen S, Jousm\u00e4ki V, Sams M, Hari R (1996) Temporal integration in auditory sensory memory: neuromagnetic evidence. Electroencephalogr Clin Neurophysiol 100:220\u2013228","journal-title":"Electroencephalogr Clin Neurophysiol"},{"key":"936_CR61","doi-asserted-by":"publisher","first-page":"236","DOI":"10.1016\/0006-8993(92)90475-O","volume":"572","author":"Z-L L\u00fc","year":"1992","unstructured":"L\u00fc Z-L, Williamson J, Kaufman L (1992) Human auditory primary and association cortex have differing lifetimes for activation traces. Brain Res 572:236\u2013241","journal-title":"Brain Res"},{"key":"936_CR62","doi-asserted-by":"publisher","first-page":"1668","DOI":"10.1126\/science.1455246","volume":"258","author":"Z-L Lu","year":"1992","unstructured":"Lu Z-L, Williamson SJ, Kaufman L (1992) Behavioral lifetime of human auditory sensory memory predicted by physiological measures. Science 258:1668\u20131670","journal-title":"Science"},{"key":"936_CR63","doi-asserted-by":"publisher","first-page":"5483","DOI":"10.1523\/JNEUROSCI.4153-08.2009","volume":"29","author":"MS Malmierca","year":"2009","unstructured":"Malmierca MS, Cristaudo S, P\u00e9rez-Gonz\u00e1lez D, Covey E (2009) Stimulus-specific adaptation in the inferior colliculus of the anesthetized rat. J Neurosci 29:5483\u20135493","journal-title":"J Neurosci"},{"key":"936_CR64","unstructured":"May PJC (2002) Do EEG and MEG measure dynamically different properties of neural activity? In: Nowak H, Haueisen J, Giesler F, Huonker R (eds) Proceedings of the 13th international conference on biomagnetism. International congress series. VDE Verlag GmbH, Berlin, pp 709\u2013711"},{"key":"936_CR65","unstructured":"May PJC, Tiitinen H (2004) Auditory scene analysis and sensory memory: the role of the auditory N100m. Neurol Clin Neurophysiol 19"},{"key":"936_CR66","doi-asserted-by":"publisher","first-page":"721574","DOI":"10.3389\/fnhum.2021.721574","volume":"15","author":"PJC May","year":"2021","unstructured":"May PJC (2021) The adaptation model offers a challenge for the predictive coding account of mismatch negativity. Front Hum Neurosci 15:721574","journal-title":"Front Hum Neurosci"},{"key":"936_CR67","doi-asserted-by":"publisher","first-page":"573","DOI":"10.1097\/00001756-200103050-00028","volume":"12","author":"P May","year":"2001","unstructured":"May P, Tiitinen H (2001) Human cortical processing of auditory events over time. NeuroReport 12:573\u2013577","journal-title":"NeuroReport"},{"key":"936_CR68","doi-asserted-by":"publisher","first-page":"66","DOI":"10.1111\/j.1469-8986.2009.00856.x","volume":"47","author":"PJC May","year":"2010","unstructured":"May PJC, Tiitinen H (2010) Mismatch negativity (MMN), the deviance-elicited auditory deflection, explained. Psychophysiology 47:66\u2013122","journal-title":"Psychophysiology"},{"key":"936_CR69","doi-asserted-by":"publisher","first-page":"152","DOI":"10.3389\/fncom.2013.00152","volume":"7","author":"PJC May","year":"2013","unstructured":"May PJC, Tiitinen H (2013) Temporal binding of sound emerges out of anatomical structure and synaptic dynamics of auditory cortex. Front Comput Neurosci 7:152","journal-title":"Front Comput Neurosci"},{"key":"936_CR70","doi-asserted-by":"publisher","first-page":"99","DOI":"10.1023\/A:1008896417606","volume":"6","author":"P May","year":"1999","unstructured":"May P, Tiitinen H, Ilmoniemi RJ, Nyman G, Taylor JG, N\u00e4\u00e4t\u00e4nen R (1999) Frequency change detection in human auditory cortex. J Comput Neurosci 6:99\u2013120","journal-title":"J Comput Neurosci"},{"key":"936_CR71","doi-asserted-by":"publisher","first-page":"615","DOI":"10.1111\/ejn.12820","volume":"41","author":"P May","year":"2015","unstructured":"May P, Tiitinen H, West\u00f6 J (2015) Computational modelling suggests that temporal integration results from synaptic adaptation in auditory cortex. Eur J Neurosci 41:615\u2013630","journal-title":"Eur J Neurosci"},{"key":"936_CR72","doi-asserted-by":"publisher","first-page":"308","DOI":"10.1111\/j.1469-8986.1997.tb02401.x","volume":"34","author":"L McEvoy","year":"1997","unstructured":"McEvoy L, Lev\u00e4nen S, Loveless N (1997) Temporal characteristics of auditory sensory memory: neuromagnetic evidence. Psychophysiology 34:308\u2013316","journal-title":"Psychophysiology"},{"issue":"6","key":"936_CR73","doi-asserted-by":"publisher","first-page":"1154","DOI":"10.1037\/h0077630","volume":"93","author":"AL Megela","year":"1979","unstructured":"Megela AL, Teyler TJ (1979) Habituation and the human evoked potential. J Comp Physiol Psychol 93(6):1154\u20131170","journal-title":"J Comp Physiol Psychol"},{"key":"936_CR74","doi-asserted-by":"crossref","unstructured":"Michon JA (1978) The making of the present: a tutorial review. In Requin J (ed) Attention and performance, vol VII, pp 89\u2013109","DOI":"10.4324\/9781003310228-7"},{"key":"936_CR75","doi-asserted-by":"publisher","DOI":"10.1371\/journal.pcbi.1002117","volume":"7","author":"R Mill","year":"2011","unstructured":"Mill R, Coath M, Wennekers T, Denham SL (2011) A neurocomputational model of stimulus-specific adaptation to oddball and markov sequences. PLoS Comput Biol 7:e1002117","journal-title":"PLoS Comput Biol"},{"key":"936_CR76","doi-asserted-by":"publisher","first-page":"332","DOI":"10.1109\/78.740118","volume":"47","author":"JC Mosher","year":"1999","unstructured":"Mosher JC, Leahy RM (1999) Source localization using recursively applied and projected (RAP) MUSIC. IEEE Tans Signal Process 47:332\u2013340","journal-title":"IEEE Tans Signal Process"},{"key":"936_CR77","doi-asserted-by":"publisher","first-page":"541","DOI":"10.1109\/10.141192","volume":"39","author":"JC Mosher","year":"1992","unstructured":"Mosher JC, Lewis PS, Leahy RM (1992) Multiple dipole modeling and localization from spatio-temporal MEG data. IEEE Trans Biomed Eng 39:541\u2013557","journal-title":"IEEE Trans Biomed Eng"},{"key":"936_CR78","doi-asserted-by":"publisher","first-page":"701","DOI":"10.1016\/j.tins.2018.08.001","volume":"41","author":"H Motanis","year":"2018","unstructured":"Motanis H, Seay MJ, Buonomano DV (2018) Short-term synaptic plasticity as a mechanism for sensory timing. Trends Neurosci 41:701\u2013711","journal-title":"Trends Neurosci"},{"key":"936_CR79","doi-asserted-by":"publisher","first-page":"201","DOI":"10.1017\/S0140525X00078407","volume":"13","author":"R N\u00e4\u00e4t\u00e4nen","year":"1990","unstructured":"N\u00e4\u00e4t\u00e4nen R (1990) The role of attention in auditory information processing as revealed by event-related potentials and other brain measures of cognitive function. Behav Brain Sci 13:201\u2013288","journal-title":"Behav Brain Sci"},{"key":"936_CR80","volume-title":"Attention and brain function","author":"R N\u00e4\u00e4t\u00e4nen","year":"1992","unstructured":"N\u00e4\u00e4t\u00e4nen R (1992) Attention and brain function. Lawrence Erlbaum Associates, Hillsdale"},{"key":"936_CR81","first-page":"313","volume":"42","author":"R N\u00e4\u00e4t\u00e4nen","year":"1978","unstructured":"N\u00e4\u00e4t\u00e4nen R, Gaillard AW, M\u00e4ntysalo S (1978) Early selective-attention effect on evoked potential reinterpreted. Acta Physiol (Oxf) 42:313\u2013329","journal-title":"Acta Physiol (Oxf)"},{"key":"936_CR82","doi-asserted-by":"publisher","first-page":"503","DOI":"10.1097\/00001756-199305000-00010","volume":"4","author":"R N\u00e4\u00e4t\u00e4nen","year":"1993","unstructured":"N\u00e4\u00e4t\u00e4nen R, Schr\u00f6ger E, Karakas S, Tervaniemi M, Paavilainen P (1993) Development of a memory trace for a complex sound in the human brain. NeuroReport 4:503\u2013506","journal-title":"NeuroReport"},{"key":"936_CR83","doi-asserted-by":"publisher","first-page":"474","DOI":"10.1016\/j.conb.2004.06.005","volume":"14","author":"I Nelken","year":"2004","unstructured":"Nelken I (2004) Processing of complex stimuli and natural scenes in the auditory cortex. Curr Opin Neurobiol 14:474\u2013480","journal-title":"Curr Opin Neurobiol"},{"key":"936_CR84","doi-asserted-by":"publisher","first-page":"199","DOI":"10.1044\/jshr.1201.199","volume":"12","author":"A Nelson","year":"1969","unstructured":"Nelson A, Lassman FM, Hoel RL (1969) The effect of variable-interval and fixed-interval signal presentation schedules on the auditory evoked response. J Speech Hear Res 12:199\u2013209","journal-title":"J Speech Hear Res"},{"key":"936_CR85","doi-asserted-by":"publisher","first-page":"89","DOI":"10.1016\/S0378-5955(99)00023-4","volume":"131","author":"SC Nuding","year":"1999","unstructured":"Nuding SC, Chen GD, Sinex DG (1999) Monaural response properties of single neurons in the chinchilla inferior colliculus. Hear Res 131:89\u2013106","journal-title":"Hear Res"},{"key":"936_CR86","doi-asserted-by":"publisher","first-page":"3114","DOI":"10.1152\/jn.1996.76.5.3114","volume":"76","author":"PS Palombi","year":"1996","unstructured":"Palombi PS, Caspary DM (1996) Physiology of the aged fischer 344 rat inferior colliculus: responses to contralateral monaural stimuli. J Neurophysiol 76:3114\u20133125","journal-title":"J Neurophysiol"},{"key":"936_CR87","doi-asserted-by":"publisher","first-page":"1","DOI":"10.3389\/fnint.2014.00019","volume":"8","author":"D P\u00e9rez-Gonz\u00e1lez","year":"2014","unstructured":"P\u00e9rez-Gonz\u00e1lez D, Malmierca MS (2014) Adaptation in the auditory system: an overview. Front Integr Neurosci 8:1\u201310","journal-title":"Front Integr Neurosci"},{"key":"936_CR88","doi-asserted-by":"publisher","first-page":"2879","DOI":"10.1111\/j.1460-9568.2005.04472.x","volume":"22","author":"D P\u00e9rez-Gonz\u00e1lez","year":"2005","unstructured":"P\u00e9rez-Gonz\u00e1lez D, Malmierca MS, Covey E (2005) Novelty detector neurons in the mammalian auditory midbrain. Eur J Neurosci 22:2879\u20132885","journal-title":"Eur J Neurosci"},{"key":"936_CR89","doi-asserted-by":"publisher","first-page":"e1540","DOI":"10.1002\/wcs.1540","volume":"12","author":"M Rescorla","year":"2021","unstructured":"Rescorla M (2021) Bayesian modeling of the mind: from norms to neurons. Wiley Interdiscip Rev Cognit Sci 12:e1540","journal-title":"Wiley Interdiscip Rev Cognit Sci"},{"key":"936_CR90","doi-asserted-by":"publisher","first-page":"559","DOI":"10.1007\/s00221-010-2391-3","volume":"205","author":"T Rosburg","year":"2010","unstructured":"Rosburg T, Zimmerer K, Huonker R (2010) Short-term habituation of auditory evoked potential and neuromagentic field components in dependence of the interstimulus interval. Exp Brain Res 205:559\u2013570","journal-title":"Exp Brain Res"},{"key":"936_CR91","volume":"8","author":"R Rosenbaum","year":"2012","unstructured":"Rosenbaum R, Rubin J, Soiron B (2012) Short term synaptic depression imposes a frequency dependent filter on synaptic information transfer. PLoS ONE 8:e1002557","journal-title":"PLoS ONE"},{"key":"936_CR92","doi-asserted-by":"publisher","first-page":"636","DOI":"10.1111\/j.1469-8986.2004.00192.x","volume":"41","author":"JJ Sable","year":"2004","unstructured":"Sable JJ, Low KA, Maclin EL, Fabiani M, Gratton G (2004) Latent inhibition mediates N1 attenuation to repeating sounds. Psychophysiology 41:636\u2013642","journal-title":"Psychophysiology"},{"key":"936_CR93","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1371\/journal.pcbi.1006666","volume":"15","author":"M Salmasi","year":"2019","unstructured":"Salmasi M, Loebel A, Glasauer S, Stemmler M (2019) Short-term synaptic depression can increase the rate of information transfer at a release site. PLoS Comput Biol 15:1\u201321","journal-title":"PLoS Comput Biol"},{"key":"936_CR94","series-title":"Advances in audiology","first-page":"40","volume-title":"Evoked magnetic fields and electric potentials","author":"M Scherg","year":"1990","unstructured":"Scherg M (1990) Fundamentals of dipole source potential analysis. In: Grandori F, Hoke M, Romani GL (eds) Evoked magnetic fields and electric potentials, vol 6. Advances in audiology. Karger, Basel, pp 40\u201369"},{"key":"936_CR95","first-page":"127","volume":"46","author":"M Scherg","year":"1996","unstructured":"Scherg M, Berg P (1996) New concepts of brain source imaging and localization. Electroencephalogr Clin Neurophysiol 46:127\u2013137","journal-title":"Electroencephalogr Clin Neurophysiol"},{"key":"936_CR96","doi-asserted-by":"publisher","first-page":"387","DOI":"10.1016\/j.neuroimage.2007.07.040","volume":"38","author":"KE Stephan","year":"2007","unstructured":"Stephan KE, Weiskopf N, Drysdale PM, Robinson PA, Friston KJ (2007) Comparing hemodynamic models with DCM. Neuroimage 38:387\u2013401","journal-title":"Neuroimage"},{"key":"936_CR97","doi-asserted-by":"publisher","DOI":"10.1371\/journal.pone.0023369","volume":"6","author":"N Tasseh","year":"2011","unstructured":"Tasseh N, Yaron A, Nelken I (2011) Stimulus-specific adaptation and deviance detection in the rat auditory cortex. PLoS ONE 6:e23369","journal-title":"PLoS ONE"},{"key":"936_CR98","doi-asserted-by":"publisher","first-page":"90","DOI":"10.1038\/372090a0","volume":"372","author":"H Tiitinen","year":"1994","unstructured":"Tiitinen H, May PJC, Reinikainen K, N\u00e4\u00e4t\u00e4nen R (1994) Attentive novelty detection in humans is governed by pre-attentive sensory memory. Nature 372:90\u201392","journal-title":"Nature"},{"key":"936_CR99","doi-asserted-by":"publisher","first-page":"719","DOI":"10.1073\/pnas.94.2.719","volume":"94","author":"M Tsodyks","year":"1997","unstructured":"Tsodyks M, Markram H (1997) The neural code between neocortical pyramidal neurons depends on neurotransmitter release probability. Proc Natl Acad Sci USA 94:719\u2013723","journal-title":"Proc Natl Acad Sci USA"},{"key":"936_CR100","doi-asserted-by":"publisher","first-page":"391","DOI":"10.1038\/nn1032","volume":"6","author":"N Ulanovsky","year":"2003","unstructured":"Ulanovsky N, Las L, Nelken I (2003) Processing of low-probability sounds by cortical neurons. Nat Neurosci 6:391\u2013398","journal-title":"Nat Neurosci"},{"key":"936_CR101","doi-asserted-by":"publisher","first-page":"10440","DOI":"10.1523\/JNEUROSCI.1905-04.2004","volume":"24","author":"N Ulanovsky","year":"2004","unstructured":"Ulanovsky N, Las L, Farkas D, Nelken I (2004) Multiple time scales of adaptation in auditory cortex neurons. J Neurosci 24:10440\u201310453","journal-title":"J Neurosci"},{"key":"936_CR102","doi-asserted-by":"publisher","first-page":"149","DOI":"10.1016\/0304-3940(96)12846-9","volume":"213","author":"MA Uusitalo","year":"2006","unstructured":"Uusitalo MA, Williamson SJ, Sepp\u00e4 MT (2006) Dynamical organisation of the human visual system revealed by lifetimes of activation traces. Neurosci Lett 213:149\u2013152","journal-title":"Neurosci Lett"},{"key":"936_CR103","doi-asserted-by":"publisher","DOI":"10.1371\/journal.pone.0077876","volume":"8","author":"P Wang","year":"2013","unstructured":"Wang P, Kn\u00f6sche TR (2013) A realistic neural mass model of the cortex with laminar-specific connections and synaptic plasticity-evaluation with auditory habituation. PLoS ONE 8:e77876","journal-title":"PLoS ONE"},{"key":"936_CR104","doi-asserted-by":"publisher","DOI":"10.1371\/journal.pone.0003929","volume":"3","author":"AL Wang","year":"2008","unstructured":"Wang AL, Mouraux A, Liang M, Ianetti GD (2008) The enhancement of the N1 wave elicited by sensory stimuli presented at very short inter-stimulus intervals is a general feature across sensory systems. PLoS ONE 3:e3929","journal-title":"PLoS ONE"},{"key":"936_CR105","doi-asserted-by":"publisher","first-page":"442","DOI":"10.1038\/nature02116","volume":"426","author":"M Wehr","year":"2003","unstructured":"Wehr M, Zador AM (2003) Balanced inhibition underlies tuning and sharpens spike timing in auditory cortex. Nature 426:442\u2013446","journal-title":"Nature"},{"key":"936_CR106","doi-asserted-by":"publisher","first-page":"437","DOI":"10.1016\/j.neuron.2005.06.009","volume":"47","author":"M Wehr","year":"2005","unstructured":"Wehr M, Zador AM (2005) Synaptic mechanisms of forward suppression in rat auditory cortex. Neuron 47:437\u2013445","journal-title":"Neuron"},{"key":"936_CR107","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1007\/s12064-003-0033-z","volume":"122","author":"T Wennekers","year":"2003","unstructured":"Wennekers T, Sommer F, Aersten A (2003) Cell assemblies. Theory Biosci 122:1\u20134","journal-title":"Theory Biosci"},{"key":"936_CR108","doi-asserted-by":"publisher","first-page":"327","DOI":"10.1162\/NECO_a_00803","volume":"28","author":"J West\u00f6","year":"2016","unstructured":"West\u00f6 J, May P, Tiitinen H (2016) Memory stacking in hierarchical networks. Neural Comput 28:327\u2013353","journal-title":"Neural Comput"},{"key":"936_CR109","doi-asserted-by":"crossref","unstructured":"Wilson H, Cowan J (1972) Excitatory and inhibitory interactions in localized populations of model neurons. J Biophys 12:1\u201324","DOI":"10.1016\/S0006-3495(72)86068-5"},{"key":"936_CR110","doi-asserted-by":"publisher","DOI":"10.1371\/journal.pcbi.1005437","volume":"13","author":"TS Yarden","year":"2017","unstructured":"Yarden TS, Nelken I (2017) Stimulus-specific adaptation in a recurrent network model of primary auditory cortex. PLoS Comput Biol 13:e1005437","journal-title":"PLoS Comput Biol"},{"key":"936_CR111","doi-asserted-by":"publisher","first-page":"305","DOI":"10.1016\/0378-5955(83)90003-5","volume":"12","author":"GK Yates","year":"1983","unstructured":"Yates GK, Cody AR, Johnstone BM (1983) Recovery of eighth nerve action potential thresholds after exposure to short, intense pure tones: similarities with temporary threshold shift. Hear Res 12:305\u2013322","journal-title":"Hear Res"},{"key":"936_CR112","doi-asserted-by":"publisher","first-page":"909","DOI":"10.1111\/j.1469-8986.2012.01370.x","volume":"49","author":"N Zacharias","year":"2012","unstructured":"Zacharias N, K\u00f6nig R, Heil P (2012) Stimulation-history effects on the M100 revealed by its differential dependence on the stimulus onset interval. Psychophysiology 49:909\u2013919","journal-title":"Psychophysiology"},{"key":"936_CR113","doi-asserted-by":"publisher","first-page":"163","DOI":"10.1016\/j.neuroscience.2011.01.060","volume":"181","author":"L Zhao","year":"2011","unstructured":"Zhao L, Liu Y, Shen L, Feng L, Hong B (2011) Stimulus-specific adaptation and its dynamics in the inferior colliculus of rat. Neuroscience 181:163\u2013174","journal-title":"Neuroscience"}],"container-title":["Biological Cybernetics"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s00422-022-00936-7.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1007\/s00422-022-00936-7\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/s00422-022-00936-7.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,7,15]],"date-time":"2022-07-15T11:08:30Z","timestamp":1657883310000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/s00422-022-00936-7"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,6,20]]},"references-count":113,"journal-issue":{"issue":"4","published-print":{"date-parts":[[2022,8]]}},"alternative-id":["936"],"URL":"http:\/\/dx.doi.org\/10.1007\/s00422-022-00936-7","relation":{},"ISSN":["1432-0770"],"issn-type":[{"value":"1432-0770","type":"electronic"}],"subject":[],"published":{"date-parts":[[2022,6,20]]},"assertion":[{"value":"1 July 2021","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"7 May 2022","order":2,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"20 June 2022","order":3,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}},{"order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Declarations"}},{"value":"The authors declare no conflict of interest.","order":2,"name":"Ethics","group":{"name":"EthicsHeading","label":"Conflicts of interest"}},{"value":"The MEG study was approved by the Ethics Committee of the Otto-von-Guericke University Magdeburg.","order":3,"name":"Ethics","group":{"name":"EthicsHeading","label":"Ethical approval"}},{"value":"The subject gave written informed consent to participate in the MEG study.","order":4,"name":"Ethics","group":{"name":"EthicsHeading","label":"Consent to participate"}},{"value":"All the authors of this study declare their consent for publishing this research.","order":5,"name":"Ethics","group":{"name":"EthicsHeading","label":"Consent for publication"}}]}}