{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,4,5]],"date-time":"2024-04-05T07:17:53Z","timestamp":1712301473449},"reference-count":18,"publisher":"Springer Science and Business Media LLC","issue":"6","license":[{"start":{"date-parts":[[2012,9,28]],"date-time":"2012-09-28T00:00:00Z","timestamp":1348790400000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Graphs and Combinatorics"],"published-print":{"date-parts":[[2013,11]]},"DOI":"10.1007\/s00373-012-1231-6","type":"journal-article","created":{"date-parts":[[2012,9,28]],"date-time":"2012-09-28T08:53:40Z","timestamp":1348822420000},"page":"1827-1837","source":"Crossref","is-referenced-by-count":13,"title":["The Hamilton-Waterloo Problem with 4-Cycles and a Single Factor of n-Cycles"],"prefix":"10.1007","volume":"29","author":[{"given":"Melissa S.","family":"Keranen","sequence":"first","affiliation":[]},{"given":"Sibel","family":"\u00d6zkan","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2012,9,28]]},"reference":[{"key":"1231_CR1","doi-asserted-by":"crossref","first-page":"31","DOI":"10.1007\/s003730200001","volume":"18","author":"P. Adams","year":"2002","unstructured":"Adams P., Billington E., Bryant D., El-Zanati S.: On the Hamilton-Waterloo Problem. Gr. Comb. 18, 31\u201351 (2002)","journal-title":"Gr. Comb."},{"key":"1231_CR2","doi-asserted-by":"crossref","first-page":"20","DOI":"10.1016\/0097-3165(89)90059-9","volume":"52","author":"B. Alspach","year":"1989","unstructured":"Alspach B., Schellenberg P.J., Stinson D.R., Wagner D.: The oberwolfach problem and factors of uniform odd length cycles. J. Comb. Theory Ser. A 52, 20\u201343 (1989)","journal-title":"J. Comb. Theory Ser. A"},{"key":"1231_CR3","doi-asserted-by":"crossref","first-page":"142","DOI":"10.1016\/0095-8956(89)90040-3","volume":"46","author":"J.C. Bermond","year":"1989","unstructured":"Bermond J.C., Favaron O., Mah\u00e9o M.: Hamiltonian decomposition of Cayley graphs of degree 4. J. Comb. Theory Ser. B 46, 142\u2013153 (1989)","journal-title":"J. Comb. Theory Ser. B"},{"issue":"1","key":"1231_CR4","doi-asserted-by":"crossref","first-page":"22","DOI":"10.1002\/jgt.20538","volume":"68","author":"D. Bryant","year":"2011","unstructured":"Bryant D., Danziger P.: On bipartite 2-factorisations of K n \u2212I and the Oberwolfach problem. J. Gr. Theory 68(1), 22\u201337 (2011)","journal-title":"J. Gr. Theory"},{"key":"1231_CR5","unstructured":"Bryant D., Rodger C.: Cycle decompositions. In: Colbourn, C.J., Dinitz, J.H. Handbook of combinatorial designs, pp. 373\u2013382. Chapman and Hall\/CRC, Boca Raton (2007)"},{"key":"1231_CR6","doi-asserted-by":"crossref","first-page":"342","DOI":"10.1002\/jcd.20219","volume":"17","author":"P. Danziger","year":"2009","unstructured":"Danziger P., Quattrocchi G., Stevens B.: The Hamilton-Waterloo problem for cycle sizes 3 and 4. J. Comb. Des. 17, 342\u2013352 (2009)","journal-title":"J. Comb. Des."},{"key":"1231_CR7","doi-asserted-by":"crossref","first-page":"160","DOI":"10.1002\/jcd.20196","volume":"17","author":"JH. Dinitz","year":"2009","unstructured":"Dinitz JH., Ling ACH.: The Hamilton-Waterloo problem: the case of triangle-factors and one Hamilton cycle. J. Comb. Des. 17, 160\u2013176 (2009)","journal-title":"J. Comb. Des."},{"issue":"4","key":"1231_CR8","doi-asserted-by":"crossref","first-page":"933","DOI":"10.11650\/twjm\/1500404987","volume":"12","author":"HL. Fu","year":"2008","unstructured":"Fu HL., Huang KC.: The Hamilton Waterloo problem for two even cycles factors. Tawanese J. Math. 12(4), 933\u2013940 (2008)","journal-title":"Tawanese J. Math."},{"key":"1231_CR9","unstructured":"Guy, RK.: Unsolved combinatorial problems. In: Welsh, D.J.A. (ed) Combinatorial Mathematics and its Applications. Proceedings of a Conference held at Oxford 1967, p. 121. Academic Press, New York (1971)"},{"key":"1231_CR10","unstructured":"Gvozdjak, P.: On the Oberwolfach problem for cycles with multiple lengths. Ph.D. Thesis, Simon Fraser University, Canada (2004)"},{"key":"1231_CR11","first-page":"227","volume":"27","author":"R. Haggkvist","year":"1985","unstructured":"Haggkvist R.: A lemma on cycle decompositions. Ann Discret. Math. 27, 227\u2013232 (1985)","journal-title":"Ann Discret. Math."},{"key":"1231_CR12","doi-asserted-by":"crossref","first-page":"243","DOI":"10.1016\/0012-365X(91)90440-D","volume":"97","author":"DG. Hoffman","year":"1991","unstructured":"Hoffman DG., Schellenberg PJ.: The existence of C k -factorizations of K 2n \u2212 F. Discret. Math. 97, 243\u2013250 (1991)","journal-title":"Discret. Math."},{"key":"1231_CR13","doi-asserted-by":"crossref","first-page":"513","DOI":"10.1112\/S0024610701002666","volume":"64","author":"A.J.W. Hilton","year":"2001","unstructured":"Hilton A.J.W., Johnson M.: Some results on the Oberwolfach problem. J. Lond. Math. Soc. (2) 64, 513\u2013522 (2001)","journal-title":"J. Lond. Math. Soc. (2)"},{"key":"1231_CR14","doi-asserted-by":"crossref","first-page":"181","DOI":"10.1016\/j.disc.2003.11.031","volume":"284","author":"P. Horak","year":"2004","unstructured":"Horak P., Nedela R., Rosa A.: The Hamilton-Waterloo problem: the case of Hamilton cycles and triangle-factors. Discret. Math. 284, 181\u2013188 (2004)","journal-title":"Discret. Math."},{"key":"1231_CR15","first-page":"197","volume":"2","author":"T.P. Kirkman","year":"1847","unstructured":"Kirkman T.P.: On a problem on combinations. Camb. Dublin Math. J. 2, 197\u2013204 (1847)","journal-title":"Camb. Dublin Math. J."},{"key":"1231_CR16","unstructured":"Lindner, C.C., Rodger, CA.: Design Theory, 2nd edn, p. 223. Chapman and Hall\/CRC, Boca Raton (2009)"},{"key":"1231_CR17","first-page":"5","volume":"80","author":"C.C. Lindner","year":"1991","unstructured":"Lindner C.C., Street A.P.: The Stern-Lenz theorem: background and applications. Congr. Numer. 80, 5\u201321 (1991)","journal-title":"Congr. Numer."},{"key":"1231_CR18","doi-asserted-by":"crossref","first-page":"20","DOI":"10.1016\/S0097-3165(02)00011-0","volume":"1","author":"J. Liu","year":"2003","unstructured":"Liu J.: The equipartite Oberwolfach problem with uniform tables. J. Combin. Theory Ser. A 101 1, 20\u201334 (2003)","journal-title":"J. Combin. Theory Ser. A 101"}],"container-title":["Graphs and Combinatorics"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s00373-012-1231-6.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/article\/10.1007\/s00373-012-1231-6\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s00373-012-1231-6","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2019,7,4]],"date-time":"2019-07-04T08:16:49Z","timestamp":1562228209000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/s00373-012-1231-6"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2012,9,28]]},"references-count":18,"journal-issue":{"issue":"6","published-print":{"date-parts":[[2013,11]]}},"alternative-id":["1231"],"URL":"http:\/\/dx.doi.org\/10.1007\/s00373-012-1231-6","relation":{},"ISSN":["0911-0119","1435-5914"],"issn-type":[{"value":"0911-0119","type":"print"},{"value":"1435-5914","type":"electronic"}],"subject":[],"published":{"date-parts":[[2012,9,28]]}}}