{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,13]],"date-time":"2024-09-13T15:31:00Z","timestamp":1726241460752},"publisher-location":"Singapore","reference-count":25,"publisher":"Springer Nature Singapore","isbn-type":[{"type":"print","value":"9789819985487"},{"type":"electronic","value":"9789819985494"}],"license":[{"start":{"date-parts":[[2023,12,25]],"date-time":"2023-12-25T00:00:00Z","timestamp":1703462400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,12,25]],"date-time":"2023-12-25T00:00:00Z","timestamp":1703462400000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2024]]},"DOI":"10.1007\/978-981-99-8549-4_18","type":"book-chapter","created":{"date-parts":[[2023,12,24]],"date-time":"2023-12-24T18:01:32Z","timestamp":1703440892000},"page":"212-224","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["MKB: Multi-Kernel Bures Metric for\u00a0Nighttime Aerial Tracking"],"prefix":"10.1007","author":[{"given":"Yingjie","family":"He","sequence":"first","affiliation":[]},{"given":"Peipei","family":"Kang","sequence":"additional","affiliation":[]},{"given":"Qintai","family":"Hu","sequence":"additional","affiliation":[]},{"given":"Xiaozhao","family":"Fang","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,12,25]]},"reference":[{"key":"18_CR1","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"850","DOI":"10.1007\/978-3-319-48881-3_56","volume-title":"Computer Vision \u2013 ECCV 2016 Workshops","author":"L Bertinetto","year":"2016","unstructured":"Bertinetto, L., Valmadre, J., Henriques, J.F., Vedaldi, A., Torr, P.H.S.: Fully-convolutional siamese networks for object tracking. In: Hua, G., J\u00e9gou, H. (eds.) ECCV 2016. LNCS, vol. 9914, pp. 850\u2013865. Springer, Cham (2016). https:\/\/doi.org\/10.1007\/978-3-319-48881-3_56"},{"key":"18_CR2","doi-asserted-by":"crossref","unstructured":"Cao, Z., Fu, C., Ye, J., Li, B., Li, Y.: HiFT: hierarchical feature transformer for aerial tracking. In: IEEE International Conference on Computer Vision (ICCV) (2021)","DOI":"10.1109\/ICCV48922.2021.01517"},{"key":"18_CR3","doi-asserted-by":"crossref","unstructured":"Chen, Z., Zhong, B., Li, G., Zhang, S., Ji, R.: Siamese box adaptive network for visual tracking. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020)","DOI":"10.1109\/CVPR42600.2020.00670"},{"issue":"1","key":"18_CR4","first-page":"2909","volume":"17","author":"S Diamond","year":"2016","unstructured":"Diamond, S., Boyd, S.: CVXPY: a python-embedded modeling language for convex optimization. J. Mach. Learn. Res. (JMLR) 17(1), 2909\u20132913 (2016)","journal-title":"J. Mach. Learn. Res. (JMLR)"},{"key":"18_CR5","doi-asserted-by":"crossref","unstructured":"Fu, C., Cao, Z., Li, Y., Ye, J., Feng, C.: Siamese anchor proposal network for high-speed aerial tracking. In: IEEE International Conference on Robotics and Automation (ICRA). IEEE (2021)","DOI":"10.1109\/ICRA48506.2021.9560756"},{"key":"18_CR6","doi-asserted-by":"crossref","unstructured":"Guo, D., Wang, J., Cui, Y., Wang, Z., Chen, S.: Siamcar: siamese fully convolutional classification and regression for visual tracking. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020)","DOI":"10.1109\/CVPR42600.2020.00630"},{"key":"18_CR7","doi-asserted-by":"crossref","unstructured":"Guo, Q., Feng, W., Zhou, C., Huang, R., Wan, L., Wang, S.: Learning dynamic siamese network for visual object tracking. In: IEEE International Conference on Computer Vision (ICCV) (2017)","DOI":"10.1109\/ICCV.2017.196"},{"issue":"5","key":"18_CR8","doi-asserted-by":"publisher","first-page":"1562","DOI":"10.1109\/TPAMI.2019.2957464","volume":"43","author":"L Huang","year":"2021","unstructured":"Huang, L., Zhao, X., Huang, K.: GOT-10k: a large high-diversity benchmark for generic object tracking in the wild. IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI) 43(5), 1562\u20131577 (2021)","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI)"},{"key":"18_CR9","doi-asserted-by":"crossref","unstructured":"Li, B., Wu, W., Wang, Q., Zhang, F., Xing, J., Yan, J.: SiamRPN++: evolution of siamese visual tracking with very deep networks. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2019)","DOI":"10.1109\/CVPR.2019.00441"},{"key":"18_CR10","doi-asserted-by":"crossref","unstructured":"Li, B., Fu, C., Ding, F., Ye, J., Lin, F.: Adtrack: target-aware dual filter learning for real-time anti-dark UAV tracking. In: IEEE International Conference on Robotics and Automation (ICRA) (2021)","DOI":"10.1109\/ICRA48506.2021.9561564"},{"key":"18_CR11","doi-asserted-by":"crossref","unstructured":"Lukezic, A., Matas, J., Kristan, M.: D3S-a discriminative single shot segmentation tracker. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020)","DOI":"10.1109\/CVPR42600.2020.00716"},{"key":"18_CR12","doi-asserted-by":"publisher","first-page":"211","DOI":"10.1007\/s11263-015-0816-y","volume":"115","author":"O Russakovsky","year":"2015","unstructured":"Russakovsky, O., et al.: Imagenet large scale visual recognition challenge. Int. J. Comput. Vis. (IJCV) 115, 211\u2013252 (2015)","journal-title":"Int. J. Comput. Vis. (IJCV)"},{"key":"18_CR13","doi-asserted-by":"crossref","unstructured":"Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-CAM: visual explanations from deep networks via gradient-based localization. In: IEEE International Conference on Computer Vision (ICCV) (2017)","DOI":"10.1109\/ICCV.2017.74"},{"key":"18_CR14","doi-asserted-by":"crossref","unstructured":"Sosnovik, I., Moskalev, A., Smeulders, A.W.: Scale equivariance improves siamese tracking. In: IEEE\/CVF Winter Conference on Applications of Computer Vision (WACV) (2021)","DOI":"10.1109\/WACV48630.2021.00281"},{"key":"18_CR15","doi-asserted-by":"publisher","first-page":"400","DOI":"10.1007\/s11263-020-01357-4","volume":"129","author":"N Wang","year":"2021","unstructured":"Wang, N., Zhou, W., Song, Y., Ma, C., Liu, W., Li, H.: Unsupervised deep representation learning for real-time tracking. Int. J. Comput. Vis. (IJCV) 129, 400\u2013418 (2021)","journal-title":"Int. J. Comput. Vis. (IJCV)"},{"key":"18_CR16","doi-asserted-by":"publisher","first-page":"2796","DOI":"10.1109\/TIP.2022.3141612","volume":"31","author":"R Wang","year":"2022","unstructured":"Wang, R., Lu, J., Lu, Y., Nie, F., Li, X.: Discrete and parameter-free multiple kernel k-means. IEEE Trans. Image Process. (TIP) 31, 2796\u20132808 (2022)","journal-title":"IEEE Trans. Image Process. (TIP)"},{"key":"18_CR17","doi-asserted-by":"crossref","unstructured":"Xu, Y., Wang, Z., Li, Z., Yuan, Y., Yu, G.: SiamFC++: towards robust and accurate visual tracking with target estimation guidelines. In: AAAI Conference on Artificial Intelligence (AAAI) (2020)","DOI":"10.1609\/aaai.v34i07.6944"},{"key":"18_CR18","doi-asserted-by":"crossref","unstructured":"Yang, L., Liu, R., Zhang, D.D., Zhang, L.: Deep location-specific tracking. In: ACM International Conference on Multimedia (MM) (2017)","DOI":"10.1145\/3123266.3123381"},{"key":"18_CR19","doi-asserted-by":"crossref","unstructured":"Ye, J., Fu, C., Cao, Z., An, S., Zheng, G.Z., Li, B.: Tracker meets night: a transformer enhancer for UAV tracking. IEEE Robot. Autom. Lett. (RA-L) 7, 3866\u20133873 (2022)","DOI":"10.1109\/LRA.2022.3146911"},{"key":"18_CR20","doi-asserted-by":"crossref","unstructured":"Ye, J., Fu, C., Zheng, G., Paudel, D.P., Chen, G.: Unsupervised domain adaptation for nighttime aerial tracking. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2022)","DOI":"10.1109\/CVPR52688.2022.00869"},{"key":"18_CR21","doi-asserted-by":"crossref","unstructured":"Zhang, L., Gonzalez-Garcia, A., Weijer, J.v.d., Danelljan, M., Khan, F.S.: Learning the model update for siamese trackers. In: IEEE International Conference on Computer Vision (ICCV) (2019)","DOI":"10.1109\/ICCV.2019.00411"},{"issue":"7","key":"18_CR22","doi-asserted-by":"publisher","first-page":"1741","DOI":"10.1109\/TPAMI.2019.2903050","volume":"42","author":"Z Zhang","year":"2019","unstructured":"Zhang, Z., Wang, M., Nehorai, A.: Optimal transport in reproducing kernel hilbert spaces: theory and applications. IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI) 42(7), 1741\u20131754 (2019)","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI)"},{"key":"18_CR23","doi-asserted-by":"crossref","unstructured":"Zhang, Z., Peng, H.: Deeper and wider siamese networks for real-time visual tracking. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2019)","DOI":"10.1109\/CVPR.2019.00472"},{"key":"18_CR24","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"771","DOI":"10.1007\/978-3-030-58589-1_46","volume-title":"Computer Vision \u2013 ECCV 2020","author":"Z Zhang","year":"2020","unstructured":"Zhang, Z., Peng, H., Fu, J., Li, B., Hu, W.: Ocean: object-aware anchor-free tracking. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12366, pp. 771\u2013787. Springer, Cham (2020). https:\/\/doi.org\/10.1007\/978-3-030-58589-1_46"},{"key":"18_CR25","doi-asserted-by":"crossref","unstructured":"Zhu, Z., Wang, Q., Li, B., Wu, W., Yan, J., Hu, W.: Distractor-aware siamese networks for visual object tracking. In: European Conference on Computer Vision (ECCV) (2018)","DOI":"10.1007\/978-3-030-01240-3_7"}],"container-title":["Lecture Notes in Computer Science","Pattern Recognition and Computer Vision"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-981-99-8549-4_18","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,12,24]],"date-time":"2023-12-24T18:09:22Z","timestamp":1703441362000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-981-99-8549-4_18"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,12,25]]},"ISBN":["9789819985487","9789819985494"],"references-count":25,"URL":"http:\/\/dx.doi.org\/10.1007\/978-981-99-8549-4_18","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2023,12,25]]},"assertion":[{"value":"25 December 2023","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"PRCV","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Chinese Conference on Pattern Recognition and Computer Vision (PRCV)","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Xiamen","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"China","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2023","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"13 October 2023","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"15 October 2023","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"6","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"ccprcv2023","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/prcv2023.xmu.edu.cn\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Double-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Microsoft CMT","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"1420","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"532","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"37% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3,78","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3,69","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"No","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}