iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://api.crossref.org/works/10.1007/978-981-97-5588-2_27
{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,11,26]],"date-time":"2024-11-26T17:10:15Z","timestamp":1732641015819,"version":"3.28.2"},"publisher-location":"Singapore","reference-count":16,"publisher":"Springer Nature Singapore","isbn-type":[{"type":"print","value":"9789819755875"},{"type":"electronic","value":"9789819755882"}],"license":[{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2024]]},"DOI":"10.1007\/978-981-97-5588-2_27","type":"book-chapter","created":{"date-parts":[[2024,8,12]],"date-time":"2024-08-12T18:02:48Z","timestamp":1723485768000},"page":"319-330","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Smart Contract Vulnerability Detection Based on Multi Graph Convolutional Neural Networks with Self-attention"],"prefix":"10.1007","author":[{"given":"Jiale","family":"Li","sequence":"first","affiliation":[]},{"given":"Xiao","family":"Yu","sequence":"additional","affiliation":[]},{"given":"Jie","family":"Yu","sequence":"additional","affiliation":[]},{"given":"Haoxin","family":"Sun","sequence":"additional","affiliation":[]},{"given":"Mengdi","family":"Sun","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2024,8,13]]},"reference":[{"key":"27_CR1","unstructured":"Peng, Q., Zhenguang, L., Qinming, H.: A review of research on smart contract security vulnerability detection technology. J. Softw. 33(08), 3059\u20133085 (2021)"},{"issue":"01","key":"27_CR2","first-page":"38","volume":"35","author":"D WeiLiang","year":"2024","unstructured":"WeiLiang, D., Zhe, L., Kui, L., et al.: Overview of smart contract vulnerability detection technology. J. Softw. 35(01), 38\u201362 (2024)","journal-title":"J. Softw."},{"key":"27_CR3","doi-asserted-by":"crossref","unstructured":"Qian, P.Z., Liu, Q., He, R., et al.: Towards automated reentrancy detection for smart contracts based on sequential models. IEEE Access 8, 19685\u201319695 (2020)","DOI":"10.1109\/ACCESS.2020.2969429"},{"key":"27_CR4","doi-asserted-by":"crossref","unstructured":"Yuan, Z., Zhenguang, L., Peng, Q., et al.: Smart contract vulnerability detection using graph neural networks. In: 29th International Joint Conference on Artificial Intelligence (IJCAI 2020), pp. 3283\u20133290. Yokohama (2020)","DOI":"10.24963\/ijcai.2020\/454"},{"issue":"2","key":"27_CR5","first-page":"1742","volume":"28","author":"W Lei","year":"2024","unstructured":"Lei, W., WeiLi, W., HongYou, Z., et al.: GSLCDA: an unsupervised deep graph structure learning method for predicting CircRNA-disease association. IEEE J. Biomed. Health Inform. 28(2), 1742\u20131751 (2024)","journal-title":"IEEE J. Biomed. Health Inform."},{"issue":"1","key":"27_CR6","doi-asserted-by":"publisher","first-page":"188","DOI":"10.1186\/s12859-023-05309-w","volume":"24","author":"W Leon","year":"2023","unstructured":"Leon, W., Lei, W., et al.: GKLOMLI: a link prediction model for inferring miRNA\u2013lncRNA interactions by using Gaussian kernel-based method on network profile and linear optimization algorithm. BMC Bioinf. 24(1), 188 (2023)","journal-title":"BMC Bioinf."},{"key":"27_CR7","doi-asserted-by":"crossref","unstructured":"Kai Z., XinLu Z., et al.: SPRDA: a link prediction approach based on the structural perturbation to infer disease-associated Piwi-interacting RNAs. Briefings Bioinf. 24(1), bbac498 (2023)","DOI":"10.1093\/bib\/bbac498"},{"key":"27_CR8","doi-asserted-by":"crossref","unstructured":"Loi, L., Duc-Hiep, C., et al.: Making smart contracts smarter. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security (CCS \u201816), pp. 254\u2013269. Association for Computing Machinery, New York, NY, USA (2016)","DOI":"10.1145\/2976749.2978309"},{"key":"27_CR9","doi-asserted-by":"crossref","unstructured":"Ivica, N., Aashish, K., Ilya, S., et al.: Finding the greedy, prodigal, and suicidal contracts at scale. In: Proceedings of the 34th Annual Computer Security Applications Conference (ACSAC\u201818), pp. 653\u2013663. Association for Computing Machinery, New York, NY, USA, 653\u2013663 (2018)","DOI":"10.1145\/3274694.3274743"},{"key":"27_CR10","doi-asserted-by":"crossref","unstructured":"Grishchenko, I., Maffei, M., Schneidewind, C.: A Semantic Framework for the Security Analysis of Ethereum Smart Contracts. In: Bauer, L., K\u00fcsters, R. (eds.) Principles of Security and Trust. POST 2018. LNCS, vol. 10804, pp. 243\u2013269 Springer, Cham (2018)","DOI":"10.1007\/978-3-319-89722-6_10"},{"key":"27_CR11","unstructured":"Brent, L., Jurisevic, A., Kong, M., et al.: Vandal: A scalable security analysis framework for smart contracts (2018). arXiv preprint arXiv:1809.03981"},{"key":"27_CR12","unstructured":"Bo, J., Ye, L., et al.: ContractFuzzer: fuzzing smart contracts for vulnerability detection. In: Proceedings of the 33rd ACM\/IEEE International Conference on Automated Software Engineering (ASE \u201818), pp. 259\u2013269. Association for Computing Machinery, New York, NY, USA (2018)"},{"key":"27_CR13","unstructured":"Tann, W., Han, X., Gupta, S., et al.: Towards safer smart contracts: A sequence learning approach to detecting security threats (2018). arXiv preprint arXiv:1811.06632"},{"issue":"2","key":"27_CR14","doi-asserted-by":"publisher","first-page":"1133","DOI":"10.1109\/TNSE.2020.2968505","volume":"8","author":"W Wei","year":"2021","unstructured":"Wei, W., Jingjing, S., Guangquan, X., et al.: ContractWard: automated vulnerability detection models for Ethereum smart contracts. IEEE Trans. Netw. Sci. Eng. 8(2), 1133\u20131144 (2021)","journal-title":"IEEE Trans. Netw. Sci. Eng."},{"key":"27_CR15","unstructured":"Hongjun, W., Zhuo, Z., Shangwen, W., et al.: Peculiar: smart contract vulnerability detection based on crucial data flow graph and pre-training techniques. In: 32nd International Symposium on Software Reliability Engineering (ISSRE), pp. 378\u2013389. IEEE (2021)"},{"key":"27_CR16","doi-asserted-by":"crossref","unstructured":"Durieux, T., Ferreira, J., Abreu, R, et al.: Empirical review of automated analysis tools on 47,587 Ethereum smart contracts. In: Proceedings of the ACM\/IEEE 42nd International Conference on Software Engineering (ICSE\u201820), pp. 530\u2013541. Association for Computing Machinery, New York, NY, USA (2020)","DOI":"10.1145\/3377811.3380364"}],"container-title":["Lecture Notes in Computer Science","Advanced Intelligent Computing Technology and Applications"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-981-97-5588-2_27","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,11,26]],"date-time":"2024-11-26T16:51:55Z","timestamp":1732639915000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-981-97-5588-2_27"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024]]},"ISBN":["9789819755875","9789819755882"],"references-count":16,"URL":"http:\/\/dx.doi.org\/10.1007\/978-981-97-5588-2_27","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2024]]},"assertion":[{"value":"13 August 2024","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ICIC","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Intelligent Computing","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Tianjin","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"China","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2024","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"5 August 2024","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"8 August 2024","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"20","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"icic2024","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/www.ic-icc.cn\/2024\/index.htm","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}