{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,10]],"date-time":"2024-09-10T17:09:21Z","timestamp":1725988161868},"publisher-location":"Cham","reference-count":19,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783319987019"},{"type":"electronic","value":"9783319987026"}],"license":[{"start":{"date-parts":[[2018,8,17]],"date-time":"2018-08-17T00:00:00Z","timestamp":1534464000000},"content-version":"unspecified","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2019]]},"DOI":"10.1007\/978-3-319-98702-6_9","type":"book-chapter","created":{"date-parts":[[2018,8,16]],"date-time":"2018-08-16T05:27:55Z","timestamp":1534397275000},"page":"71-79","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Improving the Use of Deep Convolutional Neural Networks for the Prediction of\u00a0Molecular Properties"],"prefix":"10.1007","author":[{"given":"Niclas","family":"St\u00e5hl","sequence":"first","affiliation":[]},{"given":"G\u00f6ran","family":"Falkman","sequence":"additional","affiliation":[]},{"given":"Alexander","family":"Karlsson","sequence":"additional","affiliation":[]},{"given":"Gunnar","family":"Mathiason","sequence":"additional","affiliation":[]},{"given":"Jonas","family":"Bostr\u00f6m","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2018,8,17]]},"reference":[{"key":"9_CR1","unstructured":"Dahl, G.E., Jaitly, N., Salakhutdinov, R.: Multi-task neural networks for QSAR predictions. ArXiv e-prints, June 2014"},{"key":"9_CR2","first-page":"2224","volume-title":"Advances in Neural Information Processing Systems 28","author":"DK Duvenaud","year":"2015","unstructured":"Duvenaud, D.K., Maclaurin, D., Iparraguirre, J., Bombarell, R., Hirzel, T., Aspuru-Guzik, A., Adams, R.P.: Convolutional networks on graphs for learning molecular fingerprints. In: Cortes, C., Lawrence, N.D., Lee, D.D., Sugiyama, M., Garnett, R. (eds.) Advances in Neural Information Processing Systems 28, pp. 2224\u20132232. Curran Associates Inc., Red Hook (2015)"},{"issue":"1","key":"9_CR3","doi-asserted-by":"publisher","first-page":"3","DOI":"10.1002\/minf.201501008","volume":"35","author":"E Gawehn","year":"2016","unstructured":"Gawehn, E., Hiss, J.A., Schneider, G.: Deep learning in drug discovery. Mol. Inform. 35(1), 3\u201314 (2016)","journal-title":"Mol. Inform."},{"key":"9_CR4","doi-asserted-by":"crossref","unstructured":"He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770\u2013778 (2016)","DOI":"10.1109\/CVPR.2016.90"},{"issue":"3","key":"9_CR5","doi-asserted-by":"publisher","first-page":"450","DOI":"10.1021\/ci970100x","volume":"38","author":"J Huuskonen","year":"1998","unstructured":"Huuskonen, J., Salo, M., Taskinen, J.: Aqueous solubility prediction of drugs based on molecular topology and neural network modeling. J. Chem. Inf. Comput. Sci. 38(3), 450\u2013456 (1998)","journal-title":"J. Chem. Inf. Comput. Sci."},{"issue":"8","key":"9_CR6","doi-asserted-by":"publisher","first-page":"595","DOI":"10.1007\/s10822-016-9938-8","volume":"30","author":"S Kearnes","year":"2016","unstructured":"Kearnes, S., McCloskey, K., Berndl, M., Pande, V., Riley, P.: Molecular graph convolutions: moving beyond fingerprints. J. Comput. Aided Mol. Des. 30(8), 595\u2013608 (2016)","journal-title":"J. Comput. Aided Mol. Des."},{"key":"9_CR7","unstructured":"Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. ArXiv e-prints, December 2014"},{"issue":"D1","key":"9_CR8","doi-asserted-by":"publisher","first-page":"D1075","DOI":"10.1093\/nar\/gkv1075","volume":"44","author":"M Kuhn","year":"2016","unstructured":"Kuhn, M., Letunic, I., Jensen, L.J., Bork, P.: The sider database of drugs and side effects. Nucleic Acids Res. 44(D1), D1075\u2013D1079 (2016)","journal-title":"Nucleic Acids Res."},{"key":"9_CR9","unstructured":"Landrum, G.: Rdkit: open-source cheminformatics (2006). http:\/\/www.rdkit.org . Accessed 3 Apr 2017"},{"issue":"7553","key":"9_CR10","doi-asserted-by":"publisher","first-page":"436","DOI":"10.1038\/nature14539","volume":"521","author":"Y LeCun","year":"2015","unstructured":"LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436\u2013444 (2015)","journal-title":"Nature"},{"issue":"7","key":"9_CR11","doi-asserted-by":"publisher","first-page":"1563","DOI":"10.1021\/ci400187y","volume":"53","author":"A Lusci","year":"2013","unstructured":"Lusci, A., Pollastri, G., Baldi, P.: Deep architectures and deep learning in chemoinformatics: the prediction of aqueous solubility for drug-like molecules. J. Chem. Inf. Model. 53(7), 1563 (2013)","journal-title":"J. Chem. Inf. Model."},{"key":"9_CR12","unstructured":"Maas, A.L., Hannun, A.Y., Ng, A.Y.: Rectifier nonlinearities improve neural network acoustic models. In: Proceedings of ICML, vol. 30 (2013)"},{"key":"9_CR13","doi-asserted-by":"publisher","first-page":"80","DOI":"10.3389\/fenvs.2015.00080","volume":"3","author":"A Mayr","year":"2016","unstructured":"Mayr, A., Klambauer, G., Unterthiner, T., Hochreiter, S.: Deeptox: toxicity prediction using deep learning. Front. Environ. Sci. 3, 80 (2016)","journal-title":"Front. Environ. Sci."},{"issue":"1","key":"9_CR14","first-page":"1929","volume":"15","author":"N Srivastava","year":"2014","unstructured":"Srivastava, N., Hinton, G.E., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929\u20131958 (2014)","journal-title":"J. Mach. Learn. Res."},{"key":"9_CR15","unstructured":"Theano Development Team: Theano: a Python framework for fast computation of mathematical expressions. arXiv e-prints, abs\/1605.02688, May 2016"},{"issue":"6","key":"9_CR16","doi-asserted-by":"publisher","first-page":"1413","DOI":"10.1021\/ci200409x","volume":"52","author":"A Varnek","year":"2012","unstructured":"Varnek, A., Baskin, I.: Machine learning methods for property prediction in chemoinformatics: quo vadis? J. Chem. Inf. Model. 52(6), 1413\u20131437 (2012)","journal-title":"J. Chem. Inf. Model."},{"key":"9_CR17","unstructured":"Wallach, I., Dzamba, M., Heifets, A.: AtomNet: a deep convolutional neural network for bioactivity prediction in structure-based drug discovery. ArXiv e-prints, October 2015"},{"key":"9_CR18","unstructured":"Weininger, D.: Smiles, a chemical language and information system. 1. Introduction to methodology and encoding rules. In: Proceedings Edinburgh Math. SOC, vol. 17, pp. 1\u201314 (1970)"},{"key":"9_CR19","doi-asserted-by":"crossref","unstructured":"Wu, Z., Ramsundar, B., Feinberg, E.N., Gomes, J., Geniesse, C., Pappu, A.S., Leswing, K., Pande, V.: MoleculeNet: a benchmark for molecular machine learning. ArXiv e-prints, March 2017","DOI":"10.1039\/C7SC02664A"}],"container-title":["Advances in Intelligent Systems and Computing","Practical Applications of Computational Biology and Bioinformatics, 12th International Conference"],"original-title":[],"link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-319-98702-6_9","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2019,10,22]],"date-time":"2019-10-22T07:05:14Z","timestamp":1571727914000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/978-3-319-98702-6_9"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2018,8,17]]},"ISBN":["9783319987019","9783319987026"],"references-count":19,"URL":"https:\/\/doi.org\/10.1007\/978-3-319-98702-6_9","relation":{},"ISSN":["2194-5357","2194-5365"],"issn-type":[{"type":"print","value":"2194-5357"},{"type":"electronic","value":"2194-5365"}],"subject":[],"published":{"date-parts":[[2018,8,17]]}}}