iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://api.crossref.org/works/10.1007/978-3-319-94211-7_31
{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,10]],"date-time":"2024-09-10T15:36:21Z","timestamp":1725982581000},"publisher-location":"Cham","reference-count":20,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783319942100"},{"type":"electronic","value":"9783319942117"}],"license":[{"start":{"date-parts":[[2018,1,1]],"date-time":"2018-01-01T00:00:00Z","timestamp":1514764800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2018,1,1]],"date-time":"2018-01-01T00:00:00Z","timestamp":1514764800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2018]]},"DOI":"10.1007\/978-3-319-94211-7_31","type":"book-chapter","created":{"date-parts":[[2018,6,29]],"date-time":"2018-06-29T07:29:59Z","timestamp":1530257399000},"page":"284-291","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Editorial Image Retrieval Using Handcrafted and CNN Features"],"prefix":"10.1007","author":[{"given":"Claudia","family":"Companioni-Brito","sequence":"first","affiliation":[]},{"given":"Mohamed","family":"Elawady","sequence":"additional","affiliation":[]},{"given":"Sule","family":"Yildirim","sequence":"additional","affiliation":[]},{"given":"Jon Yngve","family":"Hardeberg","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2018,6,30]]},"reference":[{"issue":"1","key":"31_CR1","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1145\/1126004.1126005","volume":"2","author":"MS Lew","year":"2006","unstructured":"Lew, M.S., Sebe, N., Djeraba, C., Jain, R.: Content-based multimedia information retrieval: state of the art and challenges. ACM Trans. Multimed. Comput. Commun. Appl. (TOMM) 2(1), 1\u201319 (2006)","journal-title":"ACM Trans. Multimed. Comput. Commun. Appl. (TOMM)"},{"key":"31_CR2","doi-asserted-by":"crossref","unstructured":"Wan, J., Wang, D., Hoi, S.C.H., Wu, P., Zhu, J., Zhang, Y., Li, J.: Deep learning for content-based image retrieval: a comprehensive study. In: Proceedings of the 22nd ACM International Conference on Multimedia, pp. 157\u2013166. ACM (2014)","DOI":"10.1145\/2647868.2654948"},{"issue":"3\u20134","key":"31_CR3","doi-asserted-by":"publisher","first-page":"1121","DOI":"10.1016\/j.mcm.2010.11.044","volume":"54","author":"J Yue","year":"2011","unstructured":"Yue, J., Li, Z., Liu, L., Fu, Z.: Content-based image retrieval using color and texture fused features. Math. Comput. Modell. 54(3\u20134), 1121\u20131127 (2011)","journal-title":"Math. Comput. Modell."},{"issue":"8","key":"31_CR4","doi-asserted-by":"publisher","first-page":"1233","DOI":"10.1016\/0031-3203(95)00160-3","volume":"29","author":"AK Jain","year":"1996","unstructured":"Jain, A.K., Vailaya, A.: Image retrieval using color and shape. Pattern Recogn. 29(8), 1233\u20131244 (1996)","journal-title":"Pattern Recogn."},{"key":"31_CR5","unstructured":"Fei-Fei, L., Perona, P.: A bayesian hierarchical model for learning natural scene categories. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005, vol. 2, pp. 524\u2013531. IEEE (2005)"},{"key":"31_CR6","doi-asserted-by":"crossref","unstructured":"Lowe, D.G.: Object recognition from local scale-invariant features. In: The Proceedings of the Seventh IEEE International Conference on Computer Vision, 1999, vol. 2, pp. 1150\u20131157. IEEE (1999)","DOI":"10.1109\/ICCV.1999.790410"},{"issue":"1","key":"31_CR7","doi-asserted-by":"publisher","first-page":"51","DOI":"10.1016\/0031-3203(95)00067-4","volume":"29","author":"T Ojala","year":"1996","unstructured":"Ojala, T., Pietik\u00e4inen, M., Harwood, D.: A comparative study of texture measures with classification based on featured distributions. Pattern Recogn. 29(1), 51\u201359 (1996)","journal-title":"Pattern Recogn."},{"key":"31_CR8","unstructured":"Zhou, W., Li, H., Tian, Q.: Recent advance in content-based image retrieval: a literature survey. arXiv preprint arXiv:1706.06064 (2017)"},{"key":"31_CR9","unstructured":"Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097\u20131105 (2012)"},{"key":"31_CR10","doi-asserted-by":"publisher","first-page":"310","DOI":"10.1016\/j.neucom.2015.10.064","volume":"175","author":"G Wu","year":"2016","unstructured":"Wu, G., Lu, W., Gao, G., Zhao, C., Liu, J.: Regional deep learning model for visual tracking. Neurocomputing 175, 310\u2013323 (2016)","journal-title":"Neurocomputing"},{"key":"31_CR11","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"241","DOI":"10.1007\/978-3-319-46466-4_15","volume-title":"Computer Vision \u2013 ECCV 2016","author":"A Gordo","year":"2016","unstructured":"Gordo, A., Almaz\u00e1n, J., Revaud, J., Larlus, D.: Deep image retrieval: learning global representations for image search. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9910, pp. 241\u2013257. Springer, Cham (2016). https:\/\/doi.org\/10.1007\/978-3-319-46466-4_15"},{"key":"31_CR12","doi-asserted-by":"publisher","first-page":"95","DOI":"10.1016\/j.neucom.2017.03.072","volume":"249","author":"A Alzu\u2019bi","year":"2017","unstructured":"Alzu\u2019bi, A., Amira, A., Ramzan, N.: Content-based image retrieval with compact deep convolutional features. Neurocomputing 249, 95\u2013105 (2017)","journal-title":"Neurocomputing"},{"key":"31_CR13","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"584","DOI":"10.1007\/978-3-319-10590-1_38","volume-title":"Computer Vision \u2013 ECCV 2014","author":"A Babenko","year":"2014","unstructured":"Babenko, A., Slesarev, A., Chigorin, A., Lempitsky, V.: Neural codes for image retrieval. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 584\u2013599. Springer, Cham (2014). https:\/\/doi.org\/10.1007\/978-3-319-10590-1_38"},{"key":"31_CR14","unstructured":"Babenko, A., Lempitsky, V.: Aggregating local deep features for image retrieval. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1269\u20131277 (2015)"},{"key":"31_CR15","doi-asserted-by":"publisher","first-page":"749","DOI":"10.1016\/j.procs.2017.03.159","volume":"107","author":"H Liu","year":"2017","unstructured":"Liu, H., Li, B., Lv, X., Huang, Y.: Image retrieval using fused deep convolutional features. Procedia Comput. Sci. 107, 749\u2013754 (2017)","journal-title":"Procedia Comput. Sci."},{"key":"31_CR16","doi-asserted-by":"crossref","unstructured":"Sharif Razavian, A., Azizpour, H., Sullivan, J., Carlsson, S.: CNN features off-the-shelf: an astounding baseline for recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 806\u2013813 (2014)","DOI":"10.1109\/CVPRW.2014.131"},{"key":"31_CR17","unstructured":"Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)"},{"key":"31_CR18","doi-asserted-by":"crossref","unstructured":"Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1\u20139 (2015)","DOI":"10.1109\/CVPR.2015.7298594"},{"key":"31_CR19","doi-asserted-by":"crossref","unstructured":"He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770\u2013778 (2016)","DOI":"10.1109\/CVPR.2016.90"},{"key":"31_CR20","unstructured":"Athiwaratkun, B., Kang, K.: Feature representation in convolutional neural networks. arXiv preprint arXiv:1507.02313 (2015)"}],"container-title":["Lecture Notes in Computer Science","Image and Signal Processing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-319-94211-7_31","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,3,7]],"date-time":"2024-03-07T15:42:36Z","timestamp":1709826156000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-319-94211-7_31"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2018]]},"ISBN":["9783319942100","9783319942117"],"references-count":20,"URL":"http:\/\/dx.doi.org\/10.1007\/978-3-319-94211-7_31","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2018]]},"assertion":[{"value":"30 June 2018","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ICISP","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Image and Signal Processing","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Cherbourg","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"France","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2018","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2 July 2018","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"4 July 2018","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"8","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"icisp2018","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/www.icisp-conf.org\/index.php.html","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"EasyChair","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"122","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"58","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"48% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"2.2","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"1.88","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"No","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"This content has been made available to all.","name":"free","label":"Free to read"}]}}