iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://api.crossref.org/works/10.1007/978-3-319-52277-7_45
{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,9]],"date-time":"2024-09-09T11:13:05Z","timestamp":1725880385541},"publisher-location":"Cham","reference-count":26,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783319522760"},{"type":"electronic","value":"9783319522777"}],"license":[{"start":{"date-parts":[[2017,1,1]],"date-time":"2017-01-01T00:00:00Z","timestamp":1483228800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2017,1,1]],"date-time":"2017-01-01T00:00:00Z","timestamp":1483228800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2017]]},"DOI":"10.1007\/978-3-319-52277-7_45","type":"book-chapter","created":{"date-parts":[[2017,2,15]],"date-time":"2017-02-15T09:42:27Z","timestamp":1487151747000},"page":"368-376","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":2,"title":["Improving Nearest Neighbor Based Multi-target Prediction Through Metric Learning"],"prefix":"10.1007","author":[{"given":"Hector","family":"Gonzalez","sequence":"first","affiliation":[]},{"given":"Carlos","family":"Morell","sequence":"additional","affiliation":[]},{"given":"Francesc J.","family":"Ferri","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2017,2,16]]},"reference":[{"key":"45_CR1","doi-asserted-by":"crossref","DOI":"10.7551\/mitpress\/7443.001.0001","volume-title":"Predicting Structured Data (Neural Information Processing)","author":"GH Bakir","year":"2007","unstructured":"Bakir, G.H., Hofmann, T., Sch\u00f6lkopf, B., Smola, A.J., Taskar, B., Vishwanathan, S.V.N.: Predicting Structured Data (Neural Information Processing). The MIT Press, Cambridge (2007)"},{"issue":"5","key":"45_CR2","doi-asserted-by":"publisher","first-page":"216","DOI":"10.1002\/widm.1157","volume":"5","author":"H Borchani","year":"2015","unstructured":"Borchani, H., Varando, G., Bielza, C., Larra\u00f1aga, P.: A survey on multi-output regression. Wiley Interdisc. Rev. Data Mining Knowl. Discov. 5(5), 216\u2013233 (2015)","journal-title":"Wiley Interdisc. Rev. Data Mining Knowl. Discov."},{"volume-title":"Nearest Neighbor (NN) Norms: NN Pattern Classification","year":"1990","author":"BV Dasarathy","key":"45_CR3","unstructured":"Dasarathy, B.V.: Nearest Neighbor (NN) Norms: NN Pattern Classification. IEEE Computer Society, Washington (1990)"},{"key":"45_CR4","first-page":"1","volume":"7","author":"J Dem\u0161ar","year":"2006","unstructured":"Dem\u0161ar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 7, 1\u201330 (2006)","journal-title":"J. Mach. Learn. Res."},{"issue":"1","key":"45_CR5","doi-asserted-by":"publisher","first-page":"7","DOI":"10.1023\/A:1008323212047","volume":"13","author":"S D\u017eeroski","year":"2000","unstructured":"D\u017eeroski, S., Dem\u0161ar, D., Grbovi\u0107, J.: Predicting chemical parameters of river water quality from bioindicator data. Appl. Intell. 13(1), 7\u201317 (2000)","journal-title":"Appl. Intell."},{"issue":"8","key":"45_CR6","doi-asserted-by":"publisher","first-page":"2298","DOI":"10.1109\/TSP.2004.831028","volume":"52","author":"MS Fern\u00e1ndez","year":"2004","unstructured":"Fern\u00e1ndez, M.S., de Prado-Cumplido, M., Arenas-Garc\u00eda, J., P\u00e9rez-Cruz, F.: SVM multiregression for nonlinear channel estimation in multiple-input multiple-output systems. IEEE Trans. Sig. Process. 52(8), 2298\u20132307 (2004)","journal-title":"IEEE Trans. Sig. Process."},{"issue":"10","key":"45_CR7","doi-asserted-by":"publisher","first-page":"959","DOI":"10.1007\/s00500-008-0392-y","volume":"13","author":"S Garc\u00eda","year":"2009","unstructured":"Garc\u00eda, S., Fern\u00e1ndez, A., Luengo, J., Herrera, F.: A study of statistical techniques and performance measures for genetics-based machine learning: accuracy and interpretability. Soft. Comput. 13(10), 959\u2013977 (2009)","journal-title":"Soft. Comput."},{"issue":"12","key":"45_CR8","doi-asserted-by":"publisher","first-page":"1400","DOI":"10.1016\/j.conengprac.2012.08.006","volume":"20","author":"Z Han","year":"2012","unstructured":"Han, Z., Liu, Y., Zhao, J., Wang, W.: Real time prediction for converter gas tank levels based on multi-output least square support vector regressor. Control Eng. Pract. 20(12), 1400\u20131409 (2012)","journal-title":"Control Eng. Pract."},{"issue":"2\u20133","key":"45_CR9","doi-asserted-by":"publisher","first-page":"147","DOI":"10.1023\/A:1007365207130","volume":"26","author":"A Karali\u010d","year":"1997","unstructured":"Karali\u010d, A., Bratko, I.: First order regression. Mach. Learn. 26(2\u20133), 147\u2013176 (1997)","journal-title":"Mach. Learn."},{"issue":"3","key":"45_CR10","doi-asserted-by":"publisher","first-page":"637","DOI":"10.1162\/089976601300014493","volume":"13","author":"SS Keerthi","year":"2001","unstructured":"Keerthi, S.S., Shevade, S.K., Bhattacharyya, C., Murthy, K.R.K.: Improvements to Platt\u2019s SMO algorithm for SVM classifier design. Neural Comput. 13(3), 637\u2013649 (2001)","journal-title":"Neural Comput."},{"issue":"8","key":"45_CR11","doi-asserted-by":"publisher","first-page":"1159","DOI":"10.1016\/j.ecolmodel.2009.01.037","volume":"220","author":"D Kocev","year":"2009","unstructured":"Kocev, D., Dzeroski, S., White, M.D., Newell, G.R., Griffioen, P.: Using single- and multi-target regression trees and ensembles to model a compound index of vegetation condition. Ecol. Model. 220(8), 1159\u20131168 (2009)","journal-title":"Ecol. Model."},{"issue":"4","key":"45_CR12","doi-asserted-by":"publisher","first-page":"287","DOI":"10.1561\/2200000019","volume":"5","author":"B Kulis","year":"2012","unstructured":"Kulis, B.: Metric learning: a survey. Found. Trends Mach. Learn. 5(4), 287\u2013364 (2012)","journal-title":"Found. Trends Mach. Learn."},{"key":"45_CR13","doi-asserted-by":"crossref","unstructured":"Perez-Suay, A., Ferri, F.J., Arevalillo, M., Albert, J.V.: Comparative evaluation of batch and online distance metric learning approaches based on margin maximization. In: IEEE International Conference on Systems, Man, and Cybernetics, Manchester, SMC 2013, UK, pp. 3511\u20133515 (2013)","DOI":"10.1109\/SMC.2013.599"},{"key":"45_CR14","doi-asserted-by":"crossref","unstructured":"Platt, J., et al.: Fast training of support vector machines using sequential minimal optimization. In: Advances in Kernel Methods\u2014Support Vector Learning, vol. 3 (1999)","DOI":"10.7551\/mitpress\/1130.003.0016"},{"key":"45_CR15","series-title":"Lecture Notes in Computer Science (Lecture Notes in Artificial Intelligence)","doi-asserted-by":"publisher","first-page":"262","DOI":"10.1007\/978-3-642-24477-3_22","volume-title":"Discovery Science","author":"M Pugelj","year":"2011","unstructured":"Pugelj, M., D\u017eeroski, S.: Predicting structured outputs k-nearest neighbours method. In: Elomaa, T., Hollm\u00e9n, J., Mannila, H. (eds.) DS 2011. LNCS (LNAI), vol. 6926, pp. 262\u2013276. Springer, Heidelberg (2011). doi:10.1007\/978-3-642-24477-3_22"},{"key":"45_CR16","doi-asserted-by":"publisher","first-page":"333","DOI":"10.1007\/s10994-011-5256-5","volume":"85","author":"J Read","year":"2011","unstructured":"Read, J., Pfahringer, B., Holmes, G., Frank, E.: Classifier chains for multi-label classification. Mach. Learn. 85, 333\u2013359 (2011)","journal-title":"Mach. Learn."},{"key":"45_CR17","unstructured":"Schultz, M., Joachims, T.: Learning a distance metric from relative comparisons. In: Advances in Neural Information Processing Systems (NIPS), p. 41 (2004)"},{"issue":"5","key":"45_CR18","doi-asserted-by":"publisher","first-page":"622","DOI":"10.1109\/TIT.1981.1056403","volume":"27","author":"R Short","year":"1981","unstructured":"Short, R., Fukunaga, K.: The optimal distance measure for nearest neighbor classification. IEEE Trans. Inf. Theory 27(5), 622\u2013627 (1981)","journal-title":"IEEE Trans. Inf. Theory"},{"issue":"1","key":"45_CR19","doi-asserted-by":"publisher","first-page":"55","DOI":"10.1007\/s10994-016-5546-z","volume":"104","author":"E Spyromitros-Xioufis","year":"2016","unstructured":"Spyromitros-Xioufis, E., Tsoumakas, G., Groves, W., Vlahavas, I.: Multi-target regression via input space expansion: treating targets as inputs. Mach. Learn. 104(1), 55\u201398 (2016)","journal-title":"Mach. Learn."},{"key":"45_CR20","first-page":"2411","volume":"12","author":"G Tsoumakas","year":"2011","unstructured":"Tsoumakas, G., Spyromitros-Xioufis, E., Vilcek, J., Vlahavas, I.: Mulan: a Java library for multi-label learning. J. Mach. Learn. Res. 12, 2411\u20132414 (2011)","journal-title":"J. Mach. Learn. Res."},{"key":"45_CR21","series-title":"Lecture Notes in Computer Science (Lecture Notes in Artificial Intelligence)","doi-asserted-by":"publisher","first-page":"225","DOI":"10.1007\/978-3-662-44845-8_15","volume-title":"Machine Learning and Knowledge Discovery in Databases","author":"G Tsoumakas","year":"2014","unstructured":"Tsoumakas, G., Spyromitros-Xioufis, E., Vrekou, A., Vlahavas, I.: Multi-target regression via random linear target combinations. In: Calders, T., Esposito, F., H\u00fcllermeier, E., Meo, R. (eds.) ECML PKDD 2014. LNCS (LNAI), vol. 8726, pp. 225\u2013240. Springer, Heidelberg (2014). doi:10.1007\/978-3-662-44845-8_15"},{"issue":"4","key":"45_CR22","doi-asserted-by":"publisher","first-page":"804","DOI":"10.1109\/LGRS.2011.2109934","volume":"8","author":"D Tuia","year":"2011","unstructured":"Tuia, D., Verrelst, J., Alonso-Chorda, L., P\u00e9rez-Cruz, F., Camps-Valls, G.: Multioutput support vector regression for remote sensing biophysical parameter estimation. IEEE Geosci. Remote Sens. Lett. 8(4), 804\u2013808 (2011)","journal-title":"IEEE Geosci. Remote Sens. Lett."},{"key":"45_CR23","unstructured":"http:\/\/archive.ics.uci.edu\/ml\/datasets\/Solar+Flare"},{"key":"45_CR24","unstructured":"https:\/\/www.kaggle.com\/c\/online-sales"},{"key":"45_CR25","unstructured":"https:\/\/www.kaggle.com\/c\/see-click-predict-fix"},{"issue":"9","key":"45_CR26","doi-asserted-by":"publisher","first-page":"1950","DOI":"10.1109\/TNNLS.2014.2361142","volume":"26","author":"F Wang","year":"2015","unstructured":"Wang, F., Zuo, W., Zhang, L., Meng, D., Zhang, D.: A kernel classification framework for metric learning. IEEE Trans. Neural Netw. Learn. Syst. 26(9), 1950\u20131962 (2015)","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."}],"container-title":["Lecture Notes in Computer Science","Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-319-52277-7_45","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,3,7]],"date-time":"2024-03-07T14:18:48Z","timestamp":1709821128000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-319-52277-7_45"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2017]]},"ISBN":["9783319522760","9783319522777"],"references-count":26,"URL":"https:\/\/doi.org\/10.1007\/978-3-319-52277-7_45","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2017]]},"assertion":[{"value":"16 February 2017","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"CIARP","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Iberoamerican Congress on Pattern Recognition","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Lima","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Peru","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2016","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"8 November 2016","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"11 November 2016","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"21","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"ciarp2016","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/www.ciarp.org\/xxi","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"This content has been made available to all.","name":"free","label":"Free to read"}]}}