iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://api.crossref.org/works/10.1007/978-3-031-73284-3_2
{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,23]],"date-time":"2024-10-23T04:16:52Z","timestamp":1729657012468,"version":"3.28.0"},"publisher-location":"Cham","reference-count":24,"publisher":"Springer Nature Switzerland","isbn-type":[{"value":"9783031732836","type":"print"},{"value":"9783031732843","type":"electronic"}],"license":[{"start":{"date-parts":[[2024,10,23]],"date-time":"2024-10-23T00:00:00Z","timestamp":1729641600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2024,10,23]],"date-time":"2024-10-23T00:00:00Z","timestamp":1729641600000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2025]]},"DOI":"10.1007\/978-3-031-73284-3_2","type":"book-chapter","created":{"date-parts":[[2024,10,22]],"date-time":"2024-10-22T08:03:29Z","timestamp":1729584209000},"page":"12-21","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Generalizable Lymph Node Metastasis Prediction in Pancreatic Cancer"],"prefix":"10.1007","author":[{"given":"Jiaqi","family":"Qu","sequence":"first","affiliation":[]},{"given":"Xunbin","family":"Wei","sequence":"additional","affiliation":[]},{"given":"Xiaohua","family":"Qian","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2024,10,23]]},"reference":[{"key":"2_CR1","doi-asserted-by":"publisher","first-page":"2008","DOI":"10.1016\/S0140-6736(20)30974-0","volume":"395","author":"JD Mizrahi","year":"2020","unstructured":"Mizrahi, J.D., Surana, R., Valle, J.W., Shroff, R.T.: Pancreatic cancer. Lancet 395, 2008\u20132020 (2020)","journal-title":"Lancet"},{"key":"2_CR2","doi-asserted-by":"publisher","DOI":"10.1016\/j.compbiomed.2020.104206","volume":"130","author":"Y-W Lee","year":"2021","unstructured":"Lee, Y.-W., Huang, C.-S., Shih, C.-C., Chang, R.-F.: Axillary lymph node metastasis status prediction of early-stage breast cancer using convolutional neural networks. Comput. Biol. Med. 130, 104206 (2021)","journal-title":"Comput. Biol. Med."},{"key":"2_CR3","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1186\/s40644-020-0288-3","volume":"20","author":"K Li","year":"2020","unstructured":"Li, K., et al.: Contrast-enhanced CT radiomics for predicting lymph node metastasis in pancreatic ductal adenocarcinoma: a pilot study. Cancer Imaging 20, 1\u201310 (2020)","journal-title":"Cancer Imaging"},{"key":"2_CR4","doi-asserted-by":"publisher","first-page":"1654","DOI":"10.3389\/fonc.2020.01654","volume":"10","author":"J Gao","year":"2020","unstructured":"Gao, J., Han, F., Jin, Y., Wang, X., Zhang, J.: A radiomics nomogram for the preoperative prediction of lymph node metastasis in pancreatic ductal adenocarcinoma. Front. Oncol. 10, 1654 (2020)","journal-title":"Front. Oncol."},{"key":"2_CR5","doi-asserted-by":"publisher","first-page":"542","DOI":"10.1002\/bjs.11928","volume":"108","author":"C Jin","year":"2021","unstructured":"Jin, C., et al.: Deep learning analysis of the primary tumour and the prediction of lymph node metastases in gastric cancer. Br. J. Surg. 108, 542\u2013549 (2021)","journal-title":"Br. J. Surg."},{"key":"2_CR6","doi-asserted-by":"publisher","first-page":"2968","DOI":"10.1007\/s00259-020-04864-1","volume":"47","author":"JC Peeken","year":"2020","unstructured":"Peeken, J.C., et al.: A CT-based radiomics model to detect prostate cancer lymph node metastases in PSMA radioguided surgery patients. Eur. J. Nucl. Med. Mol. Imaging 47, 2968\u20132977 (2020)","journal-title":"Eur. J. Nucl. Med. Mol. Imaging"},{"key":"2_CR7","doi-asserted-by":"crossref","unstructured":"Liu, H., et al.: Preoperative prediction of lymph node metastasis in colorectal cancer with deep learning. BME frontiers (2022)","DOI":"10.34133\/2022\/9860179"},{"key":"2_CR8","doi-asserted-by":"publisher","first-page":"4807","DOI":"10.1038\/s41467-020-18497-3","volume":"11","author":"J Yu","year":"2020","unstructured":"Yu, J., et al.: Lymph node metastasis prediction of papillary thyroid carcinoma based on transfer learning radiomics. Nat. Commun. 11, 4807 (2020)","journal-title":"Nat. Commun."},{"key":"2_CR9","doi-asserted-by":"crossref","unstructured":"Wang, Y., et al.: CT radiomics nomogram for the preoperative prediction of lymph node metastasis in gastric cancer. Eur. Radiol. 30, 976\u2013986 (2020)","DOI":"10.1007\/s00330-019-06398-z"},{"key":"2_CR10","doi-asserted-by":"crossref","unstructured":"Sun, Q. et al.: Deep learning vs. radiomics for predicting axillary lymph node metastasis of breast cancer using ultrasound images: don't forget the peritumoral region. Front. Oncol. 10, 53 (2020)","DOI":"10.3389\/fonc.2020.00053"},{"key":"2_CR11","doi-asserted-by":"publisher","first-page":"3059","DOI":"10.1109\/JBHI.2022.3140236","volume":"26","author":"M Qiao","year":"2022","unstructured":"Qiao, M., et al.: Breast tumor classification based on MRI-US images by disentangling modality features. IEEE J. Biomed. Health Inform. 26, 3059\u20133067 (2022)","journal-title":"IEEE J. Biomed. Health Inform."},{"key":"2_CR12","doi-asserted-by":"crossref","unstructured":"Liu, S., Fang, M., Dong, D., Shang, W., Tian, J.: Multi-task residual cross-attention network for tumor segmentation and lymph node metastasis prediction in cervical cancer. In: 2023 IEEE 20th International Symposium on Biomedical Imaging (ISBI), pp. 1\u20135. IEEE (2023)","DOI":"10.1109\/ISBI53787.2023.10230398"},{"key":"2_CR13","doi-asserted-by":"crossref","unstructured":"Gong, R., Li, W., Chen, Y., Gool, L.V.: Dlow: domain flow for adaptation and generalization. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 2477\u20132486 (2019)","DOI":"10.1109\/CVPR.2019.00258"},{"key":"2_CR14","doi-asserted-by":"publisher","DOI":"10.1016\/j.media.2024.103154","volume":"94","author":"J Qu","year":"2024","unstructured":"Qu, J., Xiao, X., Wei, X., Qian, X.: A causality-inspired generalized model for automated pancreatic cancer diagnosis. Med. Image Anal. 94, 103154 (2024)","journal-title":"Med. Image Anal."},{"key":"2_CR15","doi-asserted-by":"crossref","unstructured":"Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223\u20132232 (2017)","DOI":"10.1109\/ICCV.2017.244"},{"key":"2_CR16","doi-asserted-by":"publisher","first-page":"4678","DOI":"10.1118\/1.2799885","volume":"34","author":"J Wang","year":"2007","unstructured":"Wang, J., Engelmann, R., Li, Q.: Segmentation of pulmonary nodules in three-dimensional CT images by use of a spiral-scanning technique. Med. Phys. 34, 4678\u20134689 (2007)","journal-title":"Med. Phys."},{"key":"2_CR17","doi-asserted-by":"publisher","first-page":"735","DOI":"10.1109\/TMI.2020.3035789","volume":"40","author":"X Chen","year":"2020","unstructured":"Chen, X., Lin, X., Shen, Q., Qian, X.: Combined spiral transformation and model-driven multi-modal deep learning scheme for automatic prediction of TP53 mutation in pancreatic cancer. IEEE Trans. Med. Imaging 40, 735\u2013747 (2020)","journal-title":"IEEE Trans. Med. Imaging"},{"key":"2_CR18","doi-asserted-by":"publisher","DOI":"10.3389\/fonc.2021.632130","volume":"11","author":"J Gao","year":"2021","unstructured":"Gao, J., et al.: Differentiating TP53 mutation status in pancreatic ductal adenocarcinoma using multiparametric MRI-derived radiomics. Front. Oncol. 11, 632130 (2021)","journal-title":"Front. Oncol."},{"key":"2_CR19","doi-asserted-by":"crossref","unstructured":"Ebrahimi, A., Luo, S., Chiong, R.: Introducing transfer learning to 3D ResNet-18 for Alzheimer\u2019s disease detection on MRI images. In: 2020 35th International Conference on Image and Vision Computing New Zealand (IVCNZ), pp. 1\u20136. IEEE (2020)","DOI":"10.1109\/IVCNZ51579.2020.9290616"},{"key":"2_CR20","unstructured":"Ilse, M., Tomczak, J., Welling, M.: Attention-based deep multiple instance learning. In: International Conference on Machine Learning, pp. 2127\u20132136. PMLR (2018)"},{"key":"2_CR21","unstructured":"Dosovitskiy, A., et al.: An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)"},{"key":"2_CR22","doi-asserted-by":"publisher","first-page":"259","DOI":"10.1016\/j.inffus.2019.02.010","volume":"51","author":"J-H Choi","year":"2019","unstructured":"Choi, J.-H., Lee, J.-S.: EmbraceNet: a robust deep learning architecture for multimodal classification. Inf. Fusion 51, 259\u2013270 (2019)","journal-title":"Inf. Fusion"},{"key":"2_CR23","doi-asserted-by":"crossref","unstructured":"Wang, W., et al.: Two-stream CNN with loose pair training for multi-modal AMD categorization. In: Medical Image Computing and Computer Assisted Intervention\u2013MICCAI 2019: 22nd International Conference, Shenzhen, China, October 13\u201317, 2019, Proceedings, Part I 22, pp. 156\u2013164. Springer (2019)","DOI":"10.1007\/978-3-030-32239-7_18"},{"key":"2_CR24","doi-asserted-by":"crossref","unstructured":"Han, Z., Yang, F., Huang, J., Zhang, C., Yao, J.: Multimodal dynamics: dynamical fusion for trustworthy multimodal classification. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 20707\u201320717 (2022)","DOI":"10.1109\/CVPR52688.2022.02005"}],"container-title":["Lecture Notes in Computer Science","Machine Learning in Medical Imaging"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-73284-3_2","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,10,22]],"date-time":"2024-10-22T08:03:56Z","timestamp":1729584236000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-73284-3_2"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,10,23]]},"ISBN":["9783031732836","9783031732843"],"references-count":24,"URL":"http:\/\/dx.doi.org\/10.1007\/978-3-031-73284-3_2","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"value":"0302-9743","type":"print"},{"value":"1611-3349","type":"electronic"}],"subject":[],"published":{"date-parts":[[2024,10,23]]},"assertion":[{"value":"23 October 2024","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"MLMI","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Workshop on Machine Learning in Medical Imaging","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Marrakesh","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Morocco","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2024","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"7 October 2024","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"7 October 2024","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"15","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"mlmi-med2024","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/sites.google.com\/view\/mlmi2024","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}