{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,13]],"date-time":"2024-09-13T21:38:05Z","timestamp":1726263485046},"publisher-location":"Cham","reference-count":36,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031637711"},{"type":"electronic","value":"9783031637728"}],"license":[{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2024]]},"DOI":"10.1007\/978-3-031-63772-8_3","type":"book-chapter","created":{"date-parts":[[2024,6,27]],"date-time":"2024-06-27T06:03:07Z","timestamp":1719468187000},"page":"31-45","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["A Multi-domain Multi-task Approach for\u00a0Feature Selection from Bulk RNA Datasets"],"prefix":"10.1007","author":[{"ORCID":"http:\/\/orcid.org\/0009-0002-4589-3335","authenticated-orcid":false,"given":"Karim","family":"Salta","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-6875-3840","authenticated-orcid":false,"given":"Tomojit","family":"Ghosh","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-9802-9263","authenticated-orcid":false,"given":"Michael","family":"Kirby","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2024,6,28]]},"reference":[{"issue":"1","key":"3_CR1","doi-asserted-by":"publisher","first-page":"245","DOI":"10.1016\/S0004-3702(97)00063-5","volume":"97","author":"AL Blum","year":"1997","unstructured":"Blum, A.L., Langley, P.: Selection of relevant features and examples in machine learning. Artif. Intell. 97(1), 245\u2013271 (1997)","journal-title":"Artif. Intell."},{"key":"3_CR2","doi-asserted-by":"crossref","unstructured":"John, G.H., Kohavi, R., Pfleger, K.: Irrelevant features and the subset selection problem. In: Proceedings of 11th International Conference on Machine Learning, pp. 121\u2013129 (1994)","DOI":"10.1016\/B978-1-55860-335-6.50023-4"},{"key":"3_CR3","doi-asserted-by":"crossref","unstructured":"Han, K., Wang, Y., Zhang, C., Li, Ch., Xu, C.: AutoEncoder Inspired Unsupervised Feature Selection, arXiv, arXiv:1710.08310 (2017). https:\/\/arxiv.org\/abs\/1710.08310","DOI":"10.1109\/ICASSP.2018.8462261"},{"key":"3_CR4","unstructured":"Fatih Balin, M., Abid, A., Zou, J.Y.: Concrete autoencoders: differentiable feature selection and reconstruction. In: ICML (2019)"},{"key":"3_CR5","unstructured":"Maddison, C. J., Mnih, A., Teh, Y. W.: The Concrete Distribution: A Continuous Relaxation of Discrete Random Variables, arXiv, arXiv:1611.00712 (2016). https:\/\/arxiv.org\/abs\/1611.00712"},{"key":"3_CR6","unstructured":"Singh, D., et al.: Fsnet: feature selection network on high-dimensional biological data. arXiv, arXiv:2001.08322 (2020). https:\/\/arxiv.org\/abs\/2001.08322"},{"issue":"5","key":"3_CR7","doi-asserted-by":"publisher","first-page":"322","DOI":"10.1089\/cmb.2015.0189","volume":"23","author":"Y Li","year":"2016","unstructured":"Li, Y., Chen, C., Wasserman, W.: Deep feature selection: theory and application to identify enhancers and promoters. J. Comput. Biol. 23(5), 322\u2013336 (2016)","journal-title":"J. Comput. Biol."},{"key":"3_CR8","unstructured":"Feng J., Simon, N.: Sparse-Input Neural Networks for High-dimensional Nonparametric Regression and Classification, arXiv, arXiv:1711.07592 (2017). https:\/\/arxiv.org\/abs\/1711.07592"},{"key":"3_CR9","doi-asserted-by":"publisher","first-page":"504","DOI":"10.1126\/science.1127647","volume":"313","author":"G Hinton","year":"2006","unstructured":"Hinton, G., Salakhutdinov, R.: Reducing the dimensionality of data with neural networks. Science 313, 504\u2013507 (2006)","journal-title":"Science"},{"key":"3_CR10","unstructured":"Salah, R., Pascal, V., Xavier, M., Xavier, G, Yoshua, B.: Contractive auto-encoders: explicit invariance during feature extraction. In: Proceedings of the 28th International Conference on Machine Learning, ICML 2011, New York, pp. 833\u2013840 (2011)"},{"key":"3_CR11","doi-asserted-by":"publisher","first-page":"1527","DOI":"10.1162\/neco.2006.18.7.1527","volume":"18","author":"G Hinton","year":"2006","unstructured":"Hinton, G., Osindero, S., Teh, Y.: A fast learning algorithm for deep belief nets. Neural Comput. 18, 1527\u20131554 (2006)","journal-title":"Neural Comput."},{"key":"3_CR12","unstructured":"Yamada, Y., Lindenbaum, O., Negahban, S., Kluger, Y.: Feature selection using stochastic gates. In: International Conference on Machine Learning, PMLR, vol. 119, pp. 10648\u201310659 (2020)"},{"issue":"127","key":"3_CR13","first-page":"1","volume":"22","author":"I Lemhadri","year":"2021","unstructured":"Lemhadri, I., Ruan, F., Abraham, L., Tibshirani, R.: Lassonet: a neural network with feature sparsity. J. Mach. Learn. Res. 22(127), 1\u201329 (2021)","journal-title":"J. Mach. Learn. Res."},{"key":"3_CR14","doi-asserted-by":"publisher","first-page":"267","DOI":"10.1111\/j.2517-6161.1996.tb02080.x","volume":"58","author":"R Tibshirani","year":"1996","unstructured":"Tibshirani, R.: Regression shrinkage and selection via the lasso. J. Roy. Stat. Soc. B 58, 267\u2013288 (1996)","journal-title":"J. Roy. Stat. Soc. B"},{"key":"3_CR15","doi-asserted-by":"crossref","unstructured":"Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. J. R. Stat. Soc. Series B Stat. Methodol. 67(2), 301\u2013320 (2005)","DOI":"10.1111\/j.1467-9868.2005.00503.x"},{"key":"3_CR16","doi-asserted-by":"crossref","unstructured":"Tibshirani, R., Saunders, M., Rosset, S., Zhu, J., Knight, K.: Sparsity and smoothness via the fused lasso. J. Roy. Stat. Soc. B (Stat. Methodol.) 67(1), 91\u2013108 (2005)","DOI":"10.1111\/j.1467-9868.2005.00490.x"},{"issue":"476","key":"3_CR17","doi-asserted-by":"publisher","first-page":"1418","DOI":"10.1198\/016214506000000735","volume":"101","author":"H Zou","year":"2006","unstructured":"Zou, H.: The adaptive lasso and its oracle properties. J. Amer. Stat. Assoc. 101(476), 1418\u20131429 (2006)","journal-title":"J. Amer. Stat. Assoc."},{"issue":"1","key":"3_CR18","doi-asserted-by":"publisher","first-page":"374","DOI":"10.1016\/j.csda.2006.12.019","volume":"52","author":"N Meinshausen","year":"2007","unstructured":"Meinshausen, N.: Relaxed lasso. Comput. Stat. Data Anal. 52(1), 374\u2013393 (2007)","journal-title":"Comput. Stat. Data Anal."},{"issue":"1","key":"3_CR19","doi-asserted-by":"publisher","first-page":"185","DOI":"10.1162\/NECO_a_00537","volume":"26","author":"M Yamada","year":"2014","unstructured":"Yamada, M., Jitkrittum, W., Sigal, L., Xing, E.P., Sugiyama, M.: High-dimensional feature selection by feature-wise kernelized lasso. Neural Comput. 26(1), 185\u2013207 (2014)","journal-title":"Neural Comput."},{"key":"3_CR20","unstructured":"Liu, H., Wasserman, L., Lafferty, J.D.: Nonparametric regression and classification with joint sparsity constraints. In: Proceedings of Advances in Neural Information Processing Systems, pp. 969\u2013976 (2009)"},{"issue":"17","key":"3_CR21","doi-asserted-by":"publisher","first-page":"2246","DOI":"10.1093\/bioinformatics\/btg308","volume":"19","author":"SK Shevade","year":"2003","unstructured":"Shevade, S.K., Keerthi, S.S.: A simple and efficient algorithm for gene selection using sparse logistic regression. Bioinformatics 19(17), 2246\u20132253 (2003)","journal-title":"Bioinformatics"},{"key":"3_CR22","doi-asserted-by":"crossref","unstructured":"Chan, A.B., Vasconcelos, N., Lanckriet, G.R.G.: Direct convex relaxations of sparse SVM. In: International Conference on Machine Learning (2007)","DOI":"10.1145\/1273496.1273515"},{"issue":"4","key":"3_CR23","doi-asserted-by":"publisher","first-page":"1217","DOI":"10.1109\/JSTARS.2014.2314262","volume":"7","author":"P Gurram","year":"2014","unstructured":"Gurram, P., Kwon, H.: Optimal sparse kernel learning in the empirical kernel feature space for hyperspectral classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 7(4), 1217\u20131226 (2014)","journal-title":"IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens."},{"key":"3_CR24","doi-asserted-by":"crossref","unstructured":"Ghosh, T., Karimov, K. ,Kirby, M.: Sparse linear centroid-encoder: a biomarker selection tool for high dimensional biological data. In: IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 3012\u20133019 (2023)","DOI":"10.1109\/BIBM58861.2023.10385473"},{"key":"3_CR25","doi-asserted-by":"crossref","unstructured":"O\u2019Hara, S., Wang, K., Slayden, R.A. et all.: Iterative feature removal yields highly discriminative pathways. BMC Genom. 14(1), 1\u201315 (2013)","DOI":"10.1186\/1471-2164-14-832"},{"issue":"1","key":"3_CR26","doi-asserted-by":"publisher","first-page":"41","DOI":"10.1023\/A:1007379606734","volume":"28","author":"R Caruana","year":"1997","unstructured":"Caruana, R.: Multitask learning. Mach. Learn. 28(1), 41\u201375 (1997)","journal-title":"Mach. Learn."},{"key":"3_CR27","unstructured":"Joshi, M., Cohen, W.W., Dredze M., Ros\u00e9, C.P.: Multi-domain learning: when do domains matter? In: Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning, pp. 1302\u20131312 (2012)"},{"key":"3_CR28","unstructured":"Yang, Y., Hospedales, T.M.: A unified perspective on multi-domain and multi-task learning. arXiv, arXiv:1412.7489 (2014). https:\/\/arxiv.org\/abs\/1412.7489"},{"key":"3_CR29","unstructured":"Ruder, S., An Overview of Multi-Task Learning in Deep Neural Networks. arXiv, arXiv:1706.05098 (2017). https:\/\/arxiv.org\/abs\/1706.05098"},{"key":"3_CR30","doi-asserted-by":"publisher","unstructured":"Yang, K.D., Belyaeva, A., Venkatachalapathy, S., et al.: Multi-domain translation between single-cell imaging and sequencing data using autoencoders. Nat. Commun. 12(31) (2021). https:\/\/doi.org\/10.1038\/s41467-020-20249-2","DOI":"10.1038\/s41467-020-20249-2"},{"key":"3_CR31","unstructured":"Kingma, D.P., Welling, M.: Auto-Encoding Variational Bayes. arXiv, arXiv:1312.6114 (2013). https:\/\/arxiv.org\/abs\/1312.6114"},{"key":"3_CR32","unstructured":"Chen, Z., Badrinarayanan, V., Lee, C.Y., Rabinovich, A.: GradNorm: gradient normalization for adaptive loss balancing in deep multitask networks. In: International Conference on Machine Learning (2017)"},{"key":"3_CR33","unstructured":"Sener, O., Koltun, V.: Multi-task learning as multi-objective optimization. In: Neural Information Processing Systems (2018)"},{"key":"3_CR34","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"282","DOI":"10.1007\/978-3-030-01270-0_17","volume-title":"Computer Vision \u2013 ECCV 2018","author":"M Guo","year":"2018","unstructured":"Guo, M., Haque, A., Huang, D.-A., Yeung, S., Fei-Fei, L.: Dynamic task prioritization for multitask learning. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11220, pp. 282\u2013299. Springer, Cham (2018). https:\/\/doi.org\/10.1007\/978-3-030-01270-0_17"},{"key":"3_CR35","unstructured":"https:\/\/github.com\/kkarimov\/iccs2024"},{"key":"3_CR36","unstructured":"https:\/\/github.com\/ray-project\/ray"}],"container-title":["Lecture Notes in Computer Science","Computational Science \u2013 ICCS 2024"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-63772-8_3","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,6,27]],"date-time":"2024-06-27T06:03:27Z","timestamp":1719468207000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-63772-8_3"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024]]},"ISBN":["9783031637711","9783031637728"],"references-count":36,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-63772-8_3","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2024]]},"assertion":[{"value":"28 June 2024","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ICCS","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Computational Science","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Malaga","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Spain","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2024","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2 July 2024","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"4 July 2024","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"24","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"iccs-computsci2024","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/www.iccs-meeting.org\/iccs2024\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}