iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://api.crossref.org/works/10.1007/978-3-031-54204-6_4
{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,13]],"date-time":"2024-09-13T17:53:54Z","timestamp":1726250034760},"publisher-location":"Cham","reference-count":67,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031542039"},{"type":"electronic","value":"9783031542046"}],"license":[{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2024]]},"DOI":"10.1007\/978-3-031-54204-6_4","type":"book-chapter","created":{"date-parts":[[2024,2,29]],"date-time":"2024-02-29T14:02:53Z","timestamp":1709215373000},"page":"64-83","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Overview of\u00a0Social Engineering Protection and\u00a0Prevention Methods"],"prefix":"10.1007","author":[{"ORCID":"http:\/\/orcid.org\/0009-0007-9644-5248","authenticated-orcid":false,"given":"Konstantinos","family":"Kontogeorgopoulos","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-9633-1610","authenticated-orcid":false,"given":"Kyriakos","family":"Kritikos","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2024,3,1]]},"reference":[{"key":"4_CR1","doi-asserted-by":"publisher","first-page":"1316","DOI":"10.1177\/0162243921992844","volume":"46","author":"N Klimburg-Witjes","year":"2021","unstructured":"Klimburg-Witjes, N., Wentland, A.: Hacking humans? Social engineering and the construction of the \u201cdeficient user\u2019\u2019 in cybersecurity discourses. Sci. Technol. Hum. Values 46, 1316\u20131339 (2021)","journal-title":"Sci. Technol. Hum. Values"},{"unstructured":"Khalid, A., Nazir, M., Hussain, S., Asim, M.: A comprehensive review of social engineering attacks and defense mechanisms. J. Inf. Secur. (2016)","key":"4_CR2"},{"issue":"3","key":"4_CR3","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1145\/2835375","volume":"48","author":"R Heartfield","year":"2016","unstructured":"Heartfield, R., Loukas, G.: A taxonomy of attacks and a survey of defence mechanisms for semantic social engineering attacks. ACM Comput. Surv. 48(3), 1\u201339 (2016). https:\/\/doi.org\/10.1145\/2835375","journal-title":"ACM Comput. Surv."},{"unstructured":"Odeh, A.E.N.A., Eleyan, D.: A survey of social engineering attacks: detection and prevention tools (2021)","key":"4_CR4"},{"issue":"3","key":"4_CR5","doi-asserted-by":"publisher","first-page":"73","DOI":"10.3390\/fi11030073","volume":"11","author":"H Aldawood","year":"2019","unstructured":"Aldawood, H., Skinner, G.: Reviewing cyber security social engineering training and awareness programs\u2014pitfalls and ongoing issues. Fut. Internet 11(3), 73 (2019). https:\/\/doi.org\/10.3390\/fi11030073","journal-title":"Fut. Internet"},{"issue":"2","key":"4_CR6","doi-asserted-by":"publisher","first-page":"79","DOI":"10.1109\/MSP.2011.36","volume":"9","author":"C Greamo","year":"2011","unstructured":"Greamo, C., Ghosh, A.: Sandboxing and virtualization: modern tools for combating malware. IEEE Secur. Priv. 9(2), 79\u201382 (2011)","journal-title":"IEEE Secur. Priv."},{"doi-asserted-by":"crossref","unstructured":"Ghafir, I., Prenosil, V., Svoboda, J., Hammoudeh, M.: A survey on network security monitoring systems, pp. 77\u201382, August 2016","key":"4_CR7","DOI":"10.1109\/W-FiCloud.2016.30"},{"doi-asserted-by":"crossref","unstructured":"Subha, T., Jayashri, S.: Efficient privacy preserving integrity checking model for cloud data storage security. In: 2016 Eighth International Conference on Advanced Computing (ICoAC), pp. 55\u201360 (2017)","key":"4_CR8","DOI":"10.1109\/ICoAC.2017.7951745"},{"key":"4_CR9","doi-asserted-by":"publisher","first-page":"74720","DOI":"10.1109\/ACCESS.2020.2987435","volume":"8","author":"M Xue","year":"2020","unstructured":"Xue, M., Yuan, C., Wu, H., Zhang, Y., Liu, W.: Machine learning security: threats, countermeasures, and evaluations. IEEE Access 8, 74720\u201374742 (2020)","journal-title":"IEEE Access"},{"unstructured":"Samakovitis, G., Petridis, M., Lansley, M., Polatidis, N., Kapetanakis, S., Amin, K.: Seen the villains: detecting social engineering attacks using case-based reasoning and deep learning, July 2019","key":"4_CR10"},{"issue":"3","key":"4_CR11","doi-asserted-by":"publisher","first-page":"30","DOI":"10.1109\/MCE.2021.3099634","volume":"11","author":"H Sedjelmaci","year":"2022","unstructured":"Sedjelmaci, H., Senouci, S.-M., Ansari, N., Boualouache, A.: A trusted hybrid learning approach to secure edge computing. IEEE Consum. Electron. Mag. 11(3), 30\u201337 (2022)","journal-title":"IEEE Consum. Electron. Mag."},{"key":"4_CR12","first-page":"10","volume":"22","author":"K Krombholz","year":"2014","unstructured":"Krombholz, K., Hobel, H., Donko-Huber, M., Weippl, E.: Advanced social engineering attacks. J. Inf. Secur. Appl. 22, 10 (2014)","journal-title":"J. Inf. Secur. Appl."},{"unstructured":"Peltier, T.R.: Information Security Policies, Procedures, and Standards: Guidelines for Effective Information Security Management (2001)","key":"4_CR13"},{"unstructured":"Frauenstein, E.D., von Solms, R.: An enterprise anti-phishing framework, March 2011","key":"4_CR14"},{"unstructured":"Kumaraguru, P.: PhishGuru: a system for educating users about semantic attacks, p. 199, April 2009","key":"4_CR15"},{"issue":"1","key":"4_CR16","doi-asserted-by":"publisher","first-page":"127","DOI":"10.20533\/ijels.2046.4568.2012.0016","volume":"2","author":"NAG Arachchilage","year":"2012","unstructured":"Arachchilage, N.A.G., Love, S., Scott, M.: Designing a mobile game to teach conceptual knowledge of avoiding \u2018phishing attacks\u2019. Int. J. e-Learn. Secur. 2(1), 127\u2013132 (2012). https:\/\/doi.org\/10.20533\/ijels.2046.4568.2012.0016","journal-title":"Int. J. e-Learn. Secur."},{"doi-asserted-by":"crossref","unstructured":"Lin, E., Greenberg, S., Trotter, E., Ma, D., Aycock, J.: Does domain highlighting help people identify phishing sites?, pp. 2075\u20132084, May 2011","key":"4_CR17","DOI":"10.1145\/1978942.1979244"},{"doi-asserted-by":"crossref","unstructured":"Lee, J., Bauer, L., Mazurek, M.: Studying the effectiveness of security images in internet banking. IEEE Internet Comput. 13 (2015)","key":"4_CR18","DOI":"10.1109\/MIC.2014.108"},{"issue":"8","key":"4_CR19","doi-asserted-by":"publisher","first-page":"840","DOI":"10.1016\/j.cose.2010.08.001","volume":"29","author":"E Kritzinger","year":"2010","unstructured":"Kritzinger, E., von Solms, S.H.: Cyber security for home users: a new way of protection through awareness enforcement. Comput. Secur. 29(8), 840\u2013847 (2010)","journal-title":"Comput. Secur."},{"doi-asserted-by":"crossref","unstructured":"Anderson, B., Kirwan, B., Jenkins, J., Eargle, D., Howard, S., Vance, A.: How polymorphic warnings reduce habituation in the brain: insights from an fMRI Study, pp. 2883\u20132892, April 2015","key":"4_CR20","DOI":"10.1145\/2702123.2702322"},{"unstructured":"Barth, A., Reis, C.: The security architecture of the chromium browser (2009)","key":"4_CR21"},{"unstructured":"Mozilla Wiki-Security\/Sandbox (2015)","key":"4_CR22"},{"unstructured":"The chromium projects-sandbox (2015)","key":"4_CR23"},{"doi-asserted-by":"crossref","unstructured":"Lu, L., Yegneswaran, V., Porras, P., Lee, W.: BLADE: an attack-agnostic approach for preventing drive-by malware infections, pp. 440\u2013450, October 2010","key":"4_CR24","DOI":"10.1145\/1866307.1866356"},{"doi-asserted-by":"crossref","unstructured":"Bianchi, A., Corbetta, J., Invernizzi, L., Fratantonio, Y., Kruegel, C., Vigna, G.: What the app is that? Deception and countermeasures in the android user interface, pp. 931\u2013948, July 2015","key":"4_CR25","DOI":"10.1109\/SP.2015.62"},{"unstructured":"Desmond, R.A.B., Richards, J., Lowe-Norris, A.G.: Active Directory, 5th edn. (2013)","key":"4_CR26"},{"doi-asserted-by":"crossref","unstructured":"Motiee, S., Hawkey, K., Beznosov, K.: Do windows users follow the principle of least privilege? Investigating user account control practices, July 2010","key":"4_CR27","DOI":"10.1145\/1837110.1837112"},{"key":"4_CR28","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"181","DOI":"10.1007\/978-3-642-23644-0_10","volume-title":"Recent Advances in Intrusion Detection","author":"MB Salem","year":"2011","unstructured":"Salem, M.B., Stolfo, S.J.: Modeling user search behavior for masquerade detection. In: Sommer, R., Balzarotti, D., Maier, G. (eds.) RAID 2011. LNCS, vol. 6961, pp. 181\u2013200. Springer, Heidelberg (2011). https:\/\/doi.org\/10.1007\/978-3-642-23644-0_10"},{"doi-asserted-by":"crossref","unstructured":"Lu, L., Perdisci, R., Lee, W.: SURF: detecting and measuring search poisoning, pp. 467\u2013476, October 2011","key":"4_CR29","DOI":"10.1145\/2046707.2046762"},{"unstructured":"Li, Z., Alrwais, S., Xie, Y., Yu, F., Wang, X.: Finding the linchpins of the dark web: a study on topologically dedicated hosts on malicious web infrastructures, pp. 112\u2013126, May 2013","key":"4_CR30"},{"unstructured":"Lee, S., Kim, J.: WARNINGBIRD: detecting suspicious URLs in Twitter stream, January 2012","key":"4_CR31"},{"key":"4_CR32","first-page":"789","volume":"3","author":"N Udzir","year":"2011","unstructured":"Udzir, N., Samsudin, K.: Towards a dynamic file integrity monitor through a security classification. Int. J. New Comput. Archit. Appl. (IJNCAA) 3, 789\u2013802 (2011)","journal-title":"Int. J. New Comput. Archit. Appl. (IJNCAA)"},{"key":"4_CR33","series-title":"Communications in Computer and Information Science","doi-asserted-by":"publisher","first-page":"253","DOI":"10.1007\/978-3-642-14478-3_26","volume-title":"Recent Trends in Network Security and Applications","author":"R Dhanalakshmi","year":"2010","unstructured":"Dhanalakshmi, R., Chellappan, C.: Detection and recognition of file masquerading for e-mail and data security. In: Meghanathan, N., Boumerdassi, S., Chaki, N., Nagamalai, D. (eds.) CNSA 2010. CCIS, vol. 89, pp. 253\u2013262. Springer, Heidelberg (2010). https:\/\/doi.org\/10.1007\/978-3-642-14478-3_26"},{"doi-asserted-by":"crossref","unstructured":"Hara, M., Yamada, A., Miyake, Y.: Visual similarity-based phishing detection without victim site information, pp. 30\u201336, May 2009","key":"4_CR34","DOI":"10.1109\/CICYBS.2009.4925087"},{"key":"4_CR35","series-title":"Advances in Intelligent Systems and Computing","doi-asserted-by":"publisher","first-page":"355","DOI":"10.1007\/978-81-322-1771-8_31","volume-title":"Proceedings of the Third International Conference on Soft Computing for Problem Solving","author":"T Bhardwaj","year":"2014","unstructured":"Bhardwaj, T., Sharma, T.K., Pandit, M.R.: Social engineering prevention by detecting malicious URLs using artificial bee colony algorithm. In: Pant, M., Deep, K., Nagar, A., Bansal, J.C. (eds.) Proceedings of the Third International Conference on Soft Computing for Problem Solving. AISC, vol. 258, pp. 355\u2013363. Springer, New Delhi (2014). https:\/\/doi.org\/10.1007\/978-81-322-1771-8_31"},{"key":"4_CR36","first-page":"61","volume":"4","author":"P Singhal","year":"2012","unstructured":"Singhal, P., Raul, N.: Malware detection module using machine learning algorithms to assist in centralized security in enterprise networks. Int. J. Netw. Secur. Appl. 4, 61\u201367 (2012)","journal-title":"Int. J. Netw. Secur. Appl."},{"doi-asserted-by":"crossref","unstructured":"Sandouka, H., Cullen, A., Mann, I.: Social engineering detection using neural networks, pp. 273\u2013278, January 2009","key":"4_CR37","DOI":"10.1109\/CW.2009.59"},{"doi-asserted-by":"publisher","unstructured":"Basnet, R., Mukkamala, S., Sung, A.H.: Detection of phishing attacks: a machine learning approach. In: Prasad, B. (eds.) Soft Computing Applications in Industry. Studies in Fuzziness and Soft Computing, vol. 226, pp. 373\u2013383. Springer, Heidelberg (2008). https:\/\/doi.org\/10.1007\/978-3-540-77465-5_19","key":"4_CR38","DOI":"10.1007\/978-3-540-77465-5_19"},{"doi-asserted-by":"crossref","unstructured":"Raskin, V., Rayz, J., Hempelmann, C.: Ontological semantic technology for detecting insider threat and social engineering. In: Proceedings New Security Paradigms Workshop, September 2010","key":"4_CR39","DOI":"10.1145\/1900546.1900563"},{"issue":"2","key":"4_CR40","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1145\/2019599.2019606","volume":"14","author":"G Xiang","year":"2011","unstructured":"Xiang, G., Hong, J., Rose, C.P., Cranor, L.: CANTINA+: a feature-rich machine learning framework for detecting phishing web sites. ACM Trans. Inf. Syst. Secur. 14(2), 1\u201328 (2011)","journal-title":"ACM Trans. Inf. Syst. Secur."},{"doi-asserted-by":"crossref","unstructured":"Cova, M., Kr\u00fcgel, C., Vigna, G.: Detection and analysis of drive-by-download attacks and malicious JavaScript code, pp. 281\u2013290, April 2010","key":"4_CR41","DOI":"10.1145\/1772690.1772720"},{"doi-asserted-by":"crossref","unstructured":"Aggarwal, A., Rajadesingan, A., Kumaraguru, P.: PhishAri: automatic realtime phishing detection on Twitter. In: eCrime Researchers Summit, eCrime, January 2013","key":"4_CR42","DOI":"10.1109\/eCrime.2012.6489521"},{"key":"4_CR43","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"78","DOI":"10.1007\/978-3-319-20550-2_5","volume-title":"Detection of Intrusions and Malware, and Vulnerability Assessment","author":"G Stringhini","year":"2015","unstructured":"Stringhini, G., Thonnard, O.: That ain\u2019t you: blocking spearphishing through behavioral modelling. In: Almgren, M., Gulisano, V., Maggi, F. (eds.) DIMVA 2015. LNCS, vol. 9148, pp. 78\u201397. Springer, Cham (2015). https:\/\/doi.org\/10.1007\/978-3-319-20550-2_5"},{"issue":"1","key":"4_CR44","doi-asserted-by":"publisher","first-page":"139","DOI":"10.1007\/s11235-020-00733-2","volume":"76","author":"A Basit","year":"2020","unstructured":"Basit, A., Zafar, M., Liu, X., Javed, A.R., Jalil, Z., Kifayat, K.: A comprehensive survey of AI-enabled phishing attacks detection techniques. Telecommun. Syst. 76(1), 139\u2013154 (2020). https:\/\/doi.org\/10.1007\/s11235-020-00733-2","journal-title":"Telecommun. Syst."},{"key":"4_CR45","first-page":"07","volume":"23","author":"S Maurya","year":"2020","unstructured":"Maurya, S., Jain, A.: Deep learning to combat phishing. J. Stat. Manag. Syst. 23, 07 (2020)","journal-title":"J. Stat. Manag. Syst."},{"doi-asserted-by":"crossref","unstructured":"Subasi, A., Molah, E., Almkallawi, F., Chaudhery, T.J.: Intelligent phishing website detection using random forest classifier, pp. 1\u20135, November 2017","key":"4_CR46","DOI":"10.1109\/ICECTA.2017.8252051"},{"doi-asserted-by":"crossref","unstructured":"Abdelhamid, N., Thabtah, F., Abdel-jaber, H.: Phishing detection: a recent intelligent machine learning comparison based on models content and features, pp. 72\u201377, July 2017","key":"4_CR47","DOI":"10.1109\/ISI.2017.8004877"},{"key":"4_CR48","doi-asserted-by":"publisher","first-page":"224","DOI":"10.1016\/j.procs.2018.03.053","volume":"129","author":"J Mao","year":"2018","unstructured":"Mao, J., et al.: Detecting phishing websites via aggregation analysis of page layouts. Procedia Comput. Sci. 129, 224\u2013230 (2018)","journal-title":"Procedia Comput. Sci."},{"key":"4_CR49","series-title":"Lecture Notes in Computer Science (Lecture Notes in Artificial Intelligence)","doi-asserted-by":"publisher","first-page":"686","DOI":"10.1007\/978-3-030-28377-3_57","volume-title":"Computational Collective Intelligence","author":"M Lansley","year":"2019","unstructured":"Lansley, M., Polatidis, N., Kapetanakis, S.: SEADer: a social engineering attack detection method based on natural language processing and artificial neural networks. In: Nguyen, N.T., Chbeir, R., Exposito, E., Aniort\u00e9, P., Trawi\u0144ski, B. (eds.) ICCCI 2019. LNCS (LNAI), vol. 11683, pp. 686\u2013696. Springer, Cham (2019). https:\/\/doi.org\/10.1007\/978-3-030-28377-3_57"},{"key":"4_CR50","series-title":"Learning and Analytics in Intelligent Systems","doi-asserted-by":"publisher","first-page":"587","DOI":"10.1007\/978-3-030-24318-0_68","volume-title":"Advances in Decision Sciences, Image Processing, Security and Computer Vision","author":"A Begum","year":"2020","unstructured":"Begum, A., Badugu, S.: A study of malicious URL detection using machine learning and heuristic approaches. In: Satapathy, S.C., Raju, K.S., Shyamala, K., Krishna, D.R., Favorskaya, M.N. (eds.) Advances in Decision Sciences, Image Processing, Security and Computer Vision. LAIS, vol. 4, pp. 587\u2013597. Springer, Cham (2020). https:\/\/doi.org\/10.1007\/978-3-030-24318-0_68"},{"key":"4_CR51","doi-asserted-by":"publisher","first-page":"e73","DOI":"10.1002\/spy2.73","volume":"2","author":"AY Chouhan","year":"2019","unstructured":"Chouhan, A.Y., Fatima, R., Liu, L., Yasin, A., Wang, J.: Contemplating social engineering studies and attack scenarios: a review study. Secur. Priv. 2, e73 (2019)","journal-title":"Secur. Priv."},{"key":"4_CR52","doi-asserted-by":"publisher","first-page":"107363","DOI":"10.1016\/j.compeleceng.2021.107363","volume":"94","author":"Y Al-Hamar","year":"2021","unstructured":"Al-Hamar, Y., Kolivand, H., Tajdini, M., Saba, T., Ramachandran, V.: Enterprise credential spear-phishing attack detection. Comput. Electr. Eng. 94, 107363 (2021)","journal-title":"Comput. Electr. Eng."},{"key":"4_CR53","doi-asserted-by":"crossref","first-page":"1","DOI":"10.3233\/JCS-171030","volume":"27","author":"R Fatima","year":"2019","unstructured":"Fatima, R., Chouhan, A.Y., Liu, L., Wang, J.: How persuasive is a phishing email? A phishing game for phishing awareness. J. Comput. Secur. 27, 1\u201332 (2019)","journal-title":"J. Comput. Secur."},{"key":"4_CR54","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1016\/j.eswa.2018.03.050","volume":"106","author":"KL Chiew","year":"2018","unstructured":"Chiew, K.L., Yong, K., Tan, C.C.L.: A survey of phishing attacks: their types, vectors and technical approaches. Exp. Syst. Appl. 106, 1\u201320 (2018)","journal-title":"Exp. Syst. Appl."},{"doi-asserted-by":"crossref","unstructured":"Yao, W., Ding, Y., Li, X.: LogoPhish: a new two-dimensional code phishing attack detection method, pp. 231\u2013236, December 2018","key":"4_CR55","DOI":"10.1109\/BDCloud.2018.00045"},{"key":"4_CR56","doi-asserted-by":"publisher","first-page":"43","DOI":"10.1186\/s13638-019-1361-0","volume":"2019","author":"J Mao","year":"2019","unstructured":"Mao, J., et al.: Phishing page detection via learning classifiers from page layout feature. EURASIP J. Wirel. Commun. Netw. 2019, 43 (2019). https:\/\/doi.org\/10.1186\/s13638-019-1361-0","journal-title":"EURASIP J. Wirel. Commun. Netw."},{"key":"4_CR57","doi-asserted-by":"publisher","first-page":"345","DOI":"10.1016\/j.eswa.2018.09.029","volume":"117","author":"O Sahingoz","year":"2019","unstructured":"Sahingoz, O., Buber, E., Demir, O., Diri, B.: Machine learning based phishing detection from URLs. Exp. Syst. Appl. 117, 345\u2013357 (2019)","journal-title":"Exp. Syst. Appl."},{"key":"4_CR58","doi-asserted-by":"publisher","first-page":"300","DOI":"10.1016\/j.eswa.2018.07.067","volume":"115","author":"M Adebowale","year":"2018","unstructured":"Adebowale, M., Lwin, K., Sanchez, E., Hossain, A.: Intelligent web-phishing detection and protection scheme using integrated features of images, frames and text. Exp. Syst. Appl. 115, 300\u2013313 (2018)","journal-title":"Exp. Syst. Appl."},{"key":"4_CR59","series-title":"Advances in Intelligent Systems and Computing","doi-asserted-by":"publisher","first-page":"120","DOI":"10.1007\/978-3-030-16660-1_12","volume-title":"Intelligent Systems Design and Applications","author":"A Pandey","year":"2020","unstructured":"Pandey, A., Gill, N., Sai Prasad Nadendla, K., Thaseen, I.S.: Identification of phishing attack in websites using random forest-SVM hybrid model. In: Abraham, A., Cherukuri, A.K., Melin, P., Gandhi, N. (eds.) ISDA 2018 2018. AISC, vol. 941, pp. 120\u2013128. Springer, Cham (2020). https:\/\/doi.org\/10.1007\/978-3-030-16660-1_12"},{"key":"4_CR60","series-title":"Advances in Intelligent Systems and Computing","doi-asserted-by":"publisher","first-page":"403","DOI":"10.1007\/978-981-13-1708-8_37","volume-title":"Progress in Advanced Computing and Intelligent Engineering","author":"A Niranjan","year":"2019","unstructured":"Niranjan, A., Haripriya, D.K., Pooja, R., Sarah, S., Deepa Shenoy, P., Venugopal, K.R.: EKRV: ensemble of kNN and random committee using voting for efficient classification of phishing. In: Pati, B., Panigrahi, C.R., Misra, S., Pujari, A.K., Bakshi, S. (eds.) Progress in Advanced Computing and Intelligent Engineering. AISC, vol. 713, pp. 403\u2013414. Springer, Singapore (2019). https:\/\/doi.org\/10.1007\/978-981-13-1708-8_37"},{"doi-asserted-by":"crossref","unstructured":"Patil, V., Thakkar, P., Shah, C., Bhat, T., Godse, S.P.: Detection and prevention of phishing websites using machine learning approach, pp. 1\u20135, August 2018","key":"4_CR61","DOI":"10.1109\/ICCUBEA.2018.8697412"},{"unstructured":"Flowerday, S.: Information security policy development and implementation: a content analysis approach, July 2014","key":"4_CR62"},{"issue":"1","key":"4_CR63","doi-asserted-by":"publisher","first-page":"54","DOI":"10.1109\/MIC.2014.108","volume":"19","author":"J Lee","year":"2015","unstructured":"Lee, J., Bauer, L., Mazurek, M.L.: The effectiveness of security images in internet banking. IEEE Internet Comput. 19(1), 54\u201362 (2015)","journal-title":"IEEE Internet Comput."},{"key":"4_CR64","doi-asserted-by":"publisher","first-page":"02","DOI":"10.1145\/2835375","volume":"48","author":"R Heartfield","year":"2016","unstructured":"Heartfield, R., Loukas, G.: A taxonomy of attacks and a survey of defence mechanisms for semantic social engineering attacks. ACM Comput. Surv. 48, 02 (2016)","journal-title":"ACM Comput. Surv."},{"doi-asserted-by":"crossref","unstructured":"Rifat, N., Ahsan, M., Chowdhury, M., Gomes, R.: BERT against social engineering attack: phishing text detection, pp. 1\u20136, May 2022","key":"4_CR65","DOI":"10.1109\/eIT53891.2022.9813922"},{"unstructured":"Wang, Z., Ren, Y., Zhu, H., Sun, L.: Threat detection for general social engineering attack using machine learning techniques, March 2022","key":"4_CR66"},{"key":"4_CR67","doi-asserted-by":"publisher","first-page":"82","DOI":"10.1016\/j.inffus.2019.12.012","volume":"58","author":"AB Arrieta","year":"2019","unstructured":"Arrieta, A.B., et al.: Explainable artificial intelligence (XAI): concepts, taxonomies, opportunities and challenges toward responsible AI. Inf. Fusion 58, 82\u2013115 (2019)","journal-title":"Inf. Fusion"}],"container-title":["Lecture Notes in Computer Science","Computer Security. ESORICS 2023 International Workshops"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-54204-6_4","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,2,29]],"date-time":"2024-02-29T14:04:10Z","timestamp":1709215450000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-54204-6_4"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024]]},"ISBN":["9783031542039","9783031542046"],"references-count":67,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-54204-6_4","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2024]]},"assertion":[{"value":"1 March 2024","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ESORICS","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"European Symposium on Research in Computer Security","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"The Hague","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"The Netherlands","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2023","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"25 September 2023","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"29 September 2023","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"28","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"esorics2023","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/esorics2023.org\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Easychair","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"478","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"93","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"19% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3-4","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"10","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"No","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}