iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://api.crossref.org/works/10.1007/978-3-031-49552-6_3
{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,13]],"date-time":"2024-09-13T15:26:05Z","timestamp":1726241165020},"publisher-location":"Cham","reference-count":25,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031495519"},{"type":"electronic","value":"9783031495526"}],"license":[{"start":{"date-parts":[[2023,12,20]],"date-time":"2023-12-20T00:00:00Z","timestamp":1703030400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,12,20]],"date-time":"2023-12-20T00:00:00Z","timestamp":1703030400000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2024]]},"DOI":"10.1007\/978-3-031-49552-6_3","type":"book-chapter","created":{"date-parts":[[2023,12,19]],"date-time":"2023-12-19T16:03:00Z","timestamp":1703001780000},"page":"24-34","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Multivariate Cuban Consumer Price Index Database, Statistic Analysis and\u00a0Forecast Baseline Based on\u00a0Vector Autoregressive"],"prefix":"10.1007","author":[{"ORCID":"http:\/\/orcid.org\/0000-0003-2630-6879","authenticated-orcid":false,"given":"Reynaldo","family":"Rosado","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-7601-4201","authenticated-orcid":false,"given":"H\u00e9ctor","family":"Gonz\u00e1lez Di\u00e9z","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-8263-0425","authenticated-orcid":false,"given":"Orlando Grabiel","family":"Toledano-L\u00f3pez","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-9433-5511","authenticated-orcid":false,"given":"Yanio","family":"Hern\u00e1ndez Heredia","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,12,20]]},"reference":[{"issue":"3","key":"3_CR1","doi-asserted-by":"publisher","first-page":"353","DOI":"10.3906\/vet-1903-19","volume":"43","author":"AC Akin","year":"2019","unstructured":"Akin, A.C., Cevrimli, M.B., Arikan, M.S., Tekindal, M.A.: Determination of the causal relationship between beef prices and the consumer price index in turkey. Turk. J. Vet. Anim. Sci. 43(3), 353\u2013358 (2019)","journal-title":"Turk. J. Vet. Anim. Sci."},{"issue":"1","key":"3_CR2","first-page":"1","volume":"25","author":"A Banerjee","year":"2021","unstructured":"Banerjee, A.: Forecasting price levels in India-an Arima framework. Acad. Mark. Stud. J. 25(1), 1\u201315 (2021)","journal-title":"Acad. Mark. Stud. J."},{"issue":"3","key":"3_CR3","first-page":"277","volume":"13","author":"Y-W Cheung","year":"1995","unstructured":"Cheung, Y.-W., Lai, K.S.: Lag order and critical values of the augmented dickey-fuller test. J. Bus. Econ. Stat. 13(3), 277\u2013280 (1995)","journal-title":"J. Bus. Econ. Stat."},{"key":"3_CR4","doi-asserted-by":"crossref","unstructured":"Cromwell, J.B.: Multivariate Tests for Time Series Models. Number 100. Sage (1994)","DOI":"10.4135\/9781412985239"},{"issue":"1","key":"3_CR5","doi-asserted-by":"publisher","first-page":"47","DOI":"10.1257\/jep.12.1.47","volume":"12","author":"WE Diewert","year":"1998","unstructured":"Diewert, W.E.: Index number issues in the consumer price index. J. Econ. Perspect. 12(1), 47\u201358 (1998)","journal-title":"J. Econ. Perspect."},{"key":"3_CR6","unstructured":"Garc\u00eda Molina, J.M.: La econom\u00eda cubana a inicios del siglo XXI: desaf\u00edos y oportunidades de la globalizaci\u00f3n. CEPAL (2005)"},{"issue":"3","key":"3_CR7","doi-asserted-by":"publisher","first-page":"70","DOI":"10.5430\/ijfr.v12n3p70","volume":"12","author":"A Ghazo","year":"2021","unstructured":"Ghazo, A., et al.: Applying the ARIMA model to the process of forecasting GDP and CPI in the Jordanian economy. Int. J. Financ. Res. 12(3), 70 (2021)","journal-title":"Int. J. Financ. Res."},{"key":"3_CR8","doi-asserted-by":"crossref","unstructured":"Granger, C.W.J.: Investigating causal relations by econometric models and cross-spectral methods. Econom.: J. Econom. Soc. 424\u2013438 (1969)","DOI":"10.2307\/1912791"},{"issue":"02","key":"3_CR9","doi-asserted-by":"publisher","first-page":"245","DOI":"10.4236\/ojs.2019.92018","volume":"9","author":"S Jere","year":"2019","unstructured":"Jere, S., Banda, A., Chilyabanyama, R., Moyo, E., et al.: Modeling consumer price index in Zambia: a comparative study between multicointegration and ARIMA approach. Open J. Stat. 9(02), 245 (2019)","journal-title":"Open J. Stat."},{"issue":"5","key":"3_CR10","doi-asserted-by":"publisher","first-page":"303","DOI":"10.13189\/aeb.2020.080505","volume":"8","author":"S Korkmaz","year":"2020","unstructured":"Korkmaz, S., Abdullazade, M.: The causal relationship between unemployment and inflation in g6 countries. Adv. Econ. Bus. 8(5), 303\u2013309 (2020)","journal-title":"Adv. Econ. Bus."},{"issue":"4","key":"3_CR11","doi-asserted-by":"publisher","first-page":"603","DOI":"10.21919\/remef.v13i4.342","volume":"13","author":"LML Anaya","year":"2018","unstructured":"Anaya, L.M.L., Moreno, V.M.L., Aguirre, H.R.O., L\u00f3pez, M.Q.: Predicci\u00f3n del ipc mexicano combinando modelos econom\u00e9tricos e inteligencia artificial. Rev. Mexicana Econ. Finanzas 13(4), 603\u2013629 (2018)","journal-title":"Rev. Mexicana Econ. Finanzas"},{"key":"3_CR12","doi-asserted-by":"crossref","unstructured":"Mallick, L., Behera, S.R., Dash, D.P.: Does CPI granger cause WPI? Empirical evidence from threshold cointegration and spectral granger causality approach in India. J. Dev. Areas 54(2) (2020)","DOI":"10.1353\/jda.2020.0019"},{"key":"3_CR13","doi-asserted-by":"crossref","unstructured":"Manik, D.P., et al.: A strategy to create daily consumer price index by using big data in statistics Indonesia. In: 2015 International Conference on Information Technology Systems and Innovation (ICITSI), pp. 1\u20135. IEEE (2015)","DOI":"10.1109\/ICITSI.2015.7437683"},{"issue":"4","key":"3_CR14","doi-asserted-by":"publisher","first-page":"143","DOI":"10.11648\/j.ajtas.20200904.18","volume":"9","author":"J Mohamed","year":"2020","unstructured":"Mohamed, J.: Time series modeling and forecasting of Somaliland consumer price index: a comparison of ARIMA and regression with ARIMA errors. Am. J. Theor. Appl. Stat. 9(4), 143\u201353 (2020)","journal-title":"Am. J. Theor. Appl. Stat."},{"issue":"3","key":"3_CR15","doi-asserted-by":"publisher","first-page":"59","DOI":"10.1257\/jep.32.3.59","volume":"32","author":"E Nakamura","year":"2018","unstructured":"Nakamura, E., Steinsson, J.: Identification in macroeconomics. J. Econ. Perspect. 32(3), 59\u201386 (2018)","journal-title":"J. Econ. Perspect."},{"issue":"6","key":"3_CR16","first-page":"16","volume":"5","author":"T Nyoni","year":"2018","unstructured":"Nyoni, T.: Modeling and forecasting inflation in Kenya: Recent insights from ARIMA and GARCH analysis. Dimorian Rev. 5(6), 16\u201340 (2018)","journal-title":"Dimorian Rev."},{"key":"3_CR17","unstructured":"Nyoni, T.: ARIMA modeling and forecasting of consumer price index (CPI) in Germany (2019)"},{"key":"3_CR18","unstructured":"ONEI. \u00cdndice de precios al consumidor base diciembre 2010 (2022)"},{"key":"3_CR19","doi-asserted-by":"crossref","unstructured":"Qin, X., Sun, M., Dong, X., Zhang, Y.: Forecasting of china consumer price index based on EEMD and SVR method. In: 2018 2nd International Conference on Data Science and Business Analytics (ICDSBA), pp. 329\u2013333. IEEE (2018)","DOI":"10.1109\/ICDSBA.2018.00069"},{"issue":"3","key":"3_CR20","doi-asserted-by":"publisher","first-page":"1078","DOI":"10.18517\/ijaseit.10.3.10813","volume":"10","author":"J Riofr\u00edo","year":"2020","unstructured":"Riofr\u00edo, J., Chang, O., Revelo-Fuelag\u00e1n, E.J., Peluffo-Ord\u00f3\u00f1ez, D.H.: Forecasting the consumer price index (CPI) of Ecuador: a comparative study of predictive models. Int. J. Adv. Sci. Eng. Inf. Technol. 10(3), 1078\u20131084 (2020)","journal-title":"Int. J. Adv. Sci. Eng. Inf. Technol."},{"key":"3_CR21","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"33","DOI":"10.1007\/978-3-030-89691-1_4","volume-title":"Progress in Artificial Intelligence and Pattern Recognition","author":"R Rosado","year":"2021","unstructured":"Rosado, R., Abreu, A.J., Arencibia, J.C., Gonzalez, H., Hernandez, Y.: Consumer price index forecasting based on univariate time series and a deep neural network. In: Hern\u00e1ndez Heredia, Y., Mili\u00e1n N\u00fa\u00f1ez, V., Ruiz Shulcloper, J. (eds.) IWAIPR 2021. LNCS, vol. 13055, pp. 33\u201342. Springer, Cham (2021). https:\/\/doi.org\/10.1007\/978-3-030-89691-1_4"},{"issue":"1","key":"3_CR22","doi-asserted-by":"publisher","first-page":"57","DOI":"10.47743\/saeb-2023-0008","volume":"70","author":"E S\u00fcnb\u00fcl","year":"2023","unstructured":"S\u00fcnb\u00fcl, E.: Linear and nonlinear relationship between real exchange rate, real interest rate and consumer price index: an empirical application for countries with different levels of development. Sci. Ann. Econ. Bus. 70(1), 57\u201370 (2023)","journal-title":"Sci. Ann. Econ. Bus."},{"issue":"1","key":"3_CR23","doi-asserted-by":"publisher","first-page":"3","DOI":"10.1089\/big.2020.0159","volume":"9","author":"JF Torres","year":"2021","unstructured":"Torres, J.F., Hadjout, D., Sebaa, A., Martinez-Alvarez, F., Troncoso, A.: Deep learning for time series forecasting: a survey. Big Data 9(1), 3\u201321 (2021)","journal-title":"Big Data"},{"key":"3_CR24","unstructured":"Triplett, J.: Handbook on Hedonic Indexes and Quality Adjustments in Price Indexes: Special Application to Information Technology Products (2004)"},{"key":"3_CR25","doi-asserted-by":"crossref","unstructured":"Zahara, S., Ilmiddaviq, M.B., et al.: Consumer price index prediction using long short term memory (LSTM) based cloud computing. J. Phys.: Conf. Ser. 1456, 012022 (2020)","DOI":"10.1088\/1742-6596\/1456\/1\/012022"}],"container-title":["Lecture Notes in Computer Science","Progress in Artificial Intelligence and Pattern Recognition"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-49552-6_3","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,12,19]],"date-time":"2023-12-19T16:03:35Z","timestamp":1703001815000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-49552-6_3"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,12,20]]},"ISBN":["9783031495519","9783031495526"],"references-count":25,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-49552-6_3","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2023,12,20]]},"assertion":[{"value":"20 December 2023","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"IWAIPR","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Workshop on Artificial Intelligence and Pattern Recognition","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Varadero","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Cuba","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2023","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"3 October 2023","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"5 October 2023","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"8","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"iwaipr2023","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/uciencia.uci.cu\/en\/v-international-scientific-conference-uciencia-2023","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Double-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Springer Nature EquinOCS","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"68","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"38","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"56% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"2.45","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"No","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}