iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://api.crossref.org/works/10.1007/978-3-031-47425-5_19
{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,13]],"date-time":"2024-09-13T16:50:18Z","timestamp":1726246218609},"publisher-location":"Cham","reference-count":27,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031474248"},{"type":"electronic","value":"9783031474255"}],"license":[{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2023]]},"DOI":"10.1007\/978-3-031-47425-5_19","type":"book-chapter","created":{"date-parts":[[2024,2,2]],"date-time":"2024-02-02T17:02:10Z","timestamp":1706893330000},"page":"205-213","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":1,"title":["Graph-Based Counterfactual Causal Inference Modeling for\u00a0Neuroimaging Analysis"],"prefix":"10.1007","author":[{"given":"Haixing","family":"Dai","sequence":"first","affiliation":[]},{"given":"Mengxuan","family":"Hu","sequence":"additional","affiliation":[]},{"given":"Qing","family":"Li","sequence":"additional","affiliation":[]},{"given":"Lu","family":"Zhang","sequence":"additional","affiliation":[]},{"given":"Lin","family":"Zhao","sequence":"additional","affiliation":[]},{"given":"Dajiang","family":"Zhu","sequence":"additional","affiliation":[]},{"given":"Ibai","family":"Diez","sequence":"additional","affiliation":[]},{"given":"Jorge","family":"Sepulcre","sequence":"additional","affiliation":[]},{"given":"Fan","family":"Zhang","sequence":"additional","affiliation":[]},{"given":"Xingyu","family":"Gao","sequence":"additional","affiliation":[]},{"given":"Manhua","family":"Liu","sequence":"additional","affiliation":[]},{"given":"Quanzheng","family":"Li","sequence":"additional","affiliation":[]},{"given":"Sheng","family":"Li","sequence":"additional","affiliation":[]},{"given":"Tianming","family":"Liu","sequence":"additional","affiliation":[]},{"given":"Xiang","family":"Li","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2024,2,3]]},"reference":[{"key":"19_CR1","doi-asserted-by":"publisher","unstructured":"An, L., et al.: Multi-level canonical correlation analysis for standard-dose pet image estimation. IEEE Trans. Image Process. 25(7), 3303\u20133315 (2016). https:\/\/doi.org\/10.1109\/TIP.2016.2567072","DOI":"10.1109\/TIP.2016.2567072"},{"key":"19_CR2","first-page":"16434","volume":"33","author":"I Bica","year":"2020","unstructured":"Bica, I., Jordon, J., van der Schaar, M.: Estimating the effects of continuous-valued interventions using generative adversarial networks. Adv. Neural. Inf. Process. Syst. 33, 16434\u201316445 (2020)","journal-title":"Adv. Neural. Inf. Process. Syst."},{"key":"19_CR3","doi-asserted-by":"crossref","unstructured":"Camus, V., et al.: Using pet with 18f-av-45 (florbetapir) to quantify brain amyloid load in a clinical environment. Eur. J. Nucl. Med. Molecul. Imag. 39(4), 621\u2013631 (2012)","DOI":"10.1007\/s00259-011-2021-8"},{"issue":"1","key":"19_CR4","first-page":"266","volume":"4","author":"HA Chipman","year":"2010","unstructured":"Chipman, H.A., George, E.I., McCulloch, R.E.: Bart: Bayesian additive regression trees. Annal. Appl. Statist. 4(1), 266\u2013298 (2010)","journal-title":"Annal. Appl. Statist."},{"key":"19_CR5","doi-asserted-by":"crossref","unstructured":"Chu, Z., Rathbun, S.L., Li, S.: Matching in selective and balanced representation space for treatment effects estimation. In: Proceedings of the 29th ACM International Conference on Information and Knowledge Management, pp. 205\u2013214 (2020)","DOI":"10.1145\/3340531.3412037"},{"key":"19_CR6","doi-asserted-by":"crossref","unstructured":"Ge, Q., et al.: Tracer-specific reference tissues selection improves detection of 18f-fdg, 18f-florbetapir, and 18f-flortaucipir pet SUVR changes in Alzheimer\u2019s disease. Hum. Brain Mapp. 43(7), 2121\u20132133 (2022)","DOI":"10.1002\/hbm.25774"},{"issue":"2","key":"19_CR7","doi-asserted-by":"publisher","first-page":"481","DOI":"10.1093\/biomet\/asn004","volume":"95","author":"BB Hansen","year":"2008","unstructured":"Hansen, B.B.: The prognostic analogue of the propensity score. Biometrika 95(2), 481\u2013488 (2008)","journal-title":"Biometrika"},{"key":"19_CR8","doi-asserted-by":"crossref","unstructured":"Hassanpour, N., Greiner, R.: Counterfactual regression with importance sampling weights. In: IJCAI, pp. 5880\u20135887 (2019)","DOI":"10.24963\/ijcai.2019\/815"},{"key":"19_CR9","doi-asserted-by":"crossref","unstructured":"Hirano, K., Imbens, G.W.: The propensity score with continuous treatments. In: Applied Bayesian Modeling and Causal Inference from Incomplete-Data Perspectives, vol. 226164, pp. 73\u201384 (2004)","DOI":"10.1002\/0470090456.ch7"},{"key":"19_CR10","doi-asserted-by":"crossref","unstructured":"Jack, C.R., et al.: Rates of $$\\upbeta $$-amyloid accumulation are independent of hippocampal neurodegeneration. Neurology 82(18), 1605 (2014)","DOI":"10.1212\/WNL.0000000000000386"},{"key":"19_CR11","unstructured":"Johansson, F., Shalit, U., Sontag, D.: Learning representations for counterfactual inference. In: International Conference on Machine Learning, pp. 3020\u20133029. PMLR (2016)"},{"key":"19_CR12","doi-asserted-by":"crossref","unstructured":"Landau, S.M., et al.: The Alzheimer\u2019s disease neuroimaging initiative: amyloid pet imaging in Alzheimer\u2019s disease: a comparison of three radiotracers. Eur. J. Nucl. Med. Mol. Imaging 41, 1398\u20131407 (2014)","DOI":"10.1007\/s00259-014-2753-3"},{"key":"19_CR13","doi-asserted-by":"crossref","unstructured":"Li, Q., et al.: The Alzheimer\u2019s disease neuroimaging initiative: Aberrant connectivity in mild cognitive impairment and Alzheimer disease revealed by multimodal neuroimaging data. Neurodegener. Dis. 18, 5\u201318 (2018)","DOI":"10.1159\/000484248"},{"key":"19_CR14","doi-asserted-by":"crossref","unstructured":"Li, Q., et al.: Multi-modal discriminative dictionary learning for Alzheimer\u2019s disease and mild cognitive impairment. Comput. Methods Prog. Biomed. 150, 1\u20138 (2017)","DOI":"10.1016\/j.cmpb.2017.07.003"},{"key":"19_CR15","doi-asserted-by":"crossref","unstructured":"Miller, M.B., et al.: Somatic genomic changes in single Alzheimer\u2019s disease neurons. Nature 604 (2022)","DOI":"10.1038\/s41586-022-04640-1"},{"key":"19_CR16","doi-asserted-by":"crossref","unstructured":"Morgan, S.L., Winship, C.: Counterfactuals and Causal Inference. Cambridge University Press (2015)","DOI":"10.1017\/CBO9781107587991"},{"key":"19_CR17","unstructured":"Nie, L., Ye, M., Liu, Q., Nicolae, D.: Vcnet and functional targeted regularization for learning causal effects of continuous treatments. arXiv preprint arXiv:2103.07861 (2021)"},{"key":"19_CR18","doi-asserted-by":"crossref","unstructured":"Ossenkoppele, R., et al.: Amyloid and tau pet-positive cognitively unimpaired individuals are at high risk for future cognitive decline. Nat. Med. 28, 2381\u20132387 (2022)","DOI":"10.1038\/s41591-022-02049-x"},{"issue":"5","key":"19_CR19","doi-asserted-by":"publisher","first-page":"688","DOI":"10.1037\/h0037350","volume":"66","author":"DB Rubin","year":"1974","unstructured":"Rubin, D.B.: Estimating causal effects of treatments in randomized and nonrandomized studies. J. Educ. Psychol. 66(5), 688 (1974)","journal-title":"J. Educ. Psychol."},{"key":"19_CR20","doi-asserted-by":"crossref","unstructured":"Schwab, P., Linhardt, L., Bauer, S., Buhmann, J.M., Karlen, W.: Learning counterfactual representations for estimating individual dose-response curves. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 5612\u20135619 (2020)","DOI":"10.1609\/aaai.v34i04.6014"},{"key":"19_CR21","unstructured":"Shalit, U., Johansson, F.D., Sontag, D.: Estimating individual treatment effect: generalization bounds and algorithms. In: International Conference on Machine Learning, pp. 3076\u20133085. PMLR (2017)"},{"issue":"1","key":"19_CR22","first-page":"1","volume":"25","author":"EA Stuart","year":"2010","unstructured":"Stuart, E.A.: Matching methods for causal inference: a review and a look forward. Statist. Sci. Rev. J. Inst. Math. Statist. 25(1), 1 (2010)","journal-title":"Statist. Sci. Rev. J. Inst. Math. Statist."},{"issue":"523","key":"19_CR23","doi-asserted-by":"publisher","first-page":"1228","DOI":"10.1080\/01621459.2017.1319839","volume":"113","author":"S Wager","year":"2018","unstructured":"Wager, S., Athey, S.: Estimation and inference of heterogeneous treatment effects using random forests. J. Am. Stat. Assoc. 113(523), 1228\u20131242 (2018)","journal-title":"J. Am. Stat. Assoc."},{"key":"19_CR24","unstructured":"Yao, L., Li, S., Li, Y., Huai, M., Gao, J., Zhang, A.: Representation learning for treatment effect estimation from observational data. Adv. Neural Inf. Process. Syst. 31 (2018)"},{"key":"19_CR25","doi-asserted-by":"crossref","unstructured":"Yao, L., et al.: Concept-level model interpretation from the causal aspect. IEEE Trans. Knowl. Data Eng. (2022)","DOI":"10.1109\/TKDE.2022.3209997"},{"key":"19_CR26","unstructured":"Zhang, Y., Zhang, H., Lipton, Z.C., Li, L.E., Xing, E.: Exploring transformer backbones for heterogeneous treatment effect estimation. In: NeurIPS ML Safety Workshop (2022)"},{"key":"19_CR27","doi-asserted-by":"publisher","unstructured":"Zhu, X., Suk, H.-I., Shen, D.: Multi-modality canonical feature selection for Alzheimer\u2019s disease diagnosis. In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds.) MICCAI 2014. LNCS, vol. 8674, pp. 162\u2013169. Springer, Cham (2014). https:\/\/doi.org\/10.1007\/978-3-319-10470-6_21","DOI":"10.1007\/978-3-319-10470-6_21"}],"container-title":["Lecture Notes in Computer Science","Medical Image Computing and Computer Assisted Intervention \u2013 MICCAI 2023 Workshops"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-47425-5_19","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,2,2]],"date-time":"2024-02-02T17:04:14Z","timestamp":1706893454000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-47425-5_19"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023]]},"ISBN":["9783031474248","9783031474255"],"references-count":27,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-47425-5_19","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2023]]},"assertion":[{"value":"3 February 2024","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"MICCAI","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Medical Image Computing and Computer-Assisted Intervention","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Vancouver, BC","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Canada","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2023","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"8 October 2023","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"12 October 2023","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"miccai2023","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/conferences.miccai.org\/2023\/en\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Double-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"CMT","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"2250","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"730","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"32% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"5","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}