{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,13]],"date-time":"2024-09-13T13:27:57Z","timestamp":1726234077649},"publisher-location":"Cham","reference-count":29,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031469930"},{"type":"electronic","value":"9783031469947"}],"license":[{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2023]]},"DOI":"10.1007\/978-3-031-46994-7_17","type":"book-chapter","created":{"date-parts":[[2023,10,26]],"date-time":"2023-10-26T07:02:16Z","timestamp":1698303736000},"page":"200-214","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Solving k-Closest Pairs in\u00a0High-Dimensional Data"],"prefix":"10.1007","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-7212-6476","authenticated-orcid":false,"given":"Martin","family":"Aum\u00fcller","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-2783-0218","authenticated-orcid":false,"given":"Matteo","family":"Ceccarello","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,10,27]]},"reference":[{"key":"17_CR1","doi-asserted-by":"crossref","unstructured":"Ahle, T.D., Aum\u00fcller, M., Pagh, R.: Parameter-free locality sensitive hashing for spherical range reporting. In: SODA, pp. 239\u2013256. SIAM (2017)","DOI":"10.1137\/1.9781611974782.16"},{"key":"17_CR2","unstructured":"Andoni, A., Indyk, P., Laarhoven, T., Razenshteyn, I.P., Schmidt, L.: Practical and optimal LSH for angular distance. In: NIPS, pp. 1225\u20131233 (2015)"},{"key":"17_CR3","doi-asserted-by":"publisher","DOI":"10.1016\/j.is.2021.101807","volume":"101","author":"M Aum\u00fcller","year":"2021","unstructured":"Aum\u00fcller, M., Ceccarello, M.: The role of local dimensionality measures in benchmarking nearest neighbor search. Inf. Syst. 101, 101807 (2021)","journal-title":"Inf. Syst."},{"key":"17_CR4","unstructured":"Aum\u00fcller, M., Christiani, T., Pagh, R., Vesterli, M.: PUFFINN: parameterless and universally fast finding of nearest neighbors. In: ESA, LIPIcs, vol. 144, pp. 10:1\u201310:16. Schloss Dagstuhl - Leibniz-Zentrum f\u00fcr Informatik (2019)"},{"key":"17_CR5","doi-asserted-by":"crossref","unstructured":"Bawa, M., Condie, T., Ganesan, P.: LSH forest: self-tuning indexes for similarity search. In: WWW, pp. 651\u2013660. ACM (2005)","DOI":"10.1145\/1060745.1060840"},{"key":"17_CR6","unstructured":"Broder, A.Z.: On the resemblance and containment of documents. In: Compression and Complexity of Sequences 1997, Proceedings, pp. 21\u201329. IEEE (1997)"},{"key":"17_CR7","series-title":"Lecture Notes in Computer Science (Lecture Notes in Artificial Intelligence)","doi-asserted-by":"publisher","first-page":"151","DOI":"10.1007\/978-3-319-93040-4_13","volume-title":"Advances in Knowledge Discovery and Data Mining","author":"X Cai","year":"2018","unstructured":"Cai, X., Rajasekaran, S., Zhang, F.: Efficient approximate algorithms for the closest pair problem in high dimensional spaces. In: Phung, D., et al. (eds.) PAKDD 2018. LNCS (LNAI), vol. 10939, pp. 151\u2013163. Springer, Cham (2018). https:\/\/doi.org\/10.1007\/978-3-319-93040-4_13"},{"key":"17_CR8","unstructured":"Chan, T.M.: Orthogonal range searching in moderate dimensions: k-d trees and range trees strike back. In: SoCG, LIPIcs, vol. 77, pp. 27:1\u201327:15 (2017)"},{"key":"17_CR9","doi-asserted-by":"crossref","unstructured":"Charikar, M.S.: Similarity estimation techniques from rounding algorithms. In: STOC, pp. 380\u2013388. ACM (2002)","DOI":"10.1145\/509907.509965"},{"key":"17_CR10","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"3","DOI":"10.1007\/978-3-030-32047-8_1","volume-title":"Similarity Search and Applications","author":"T Christiani","year":"2019","unstructured":"Christiani, T.: Fast locality-sensitive hashing frameworks for approximate near neighbor search. In: Amato, G., Gennaro, C., Oria, V., Radovanovi\u0107, M. (eds.) SISAP 2019. LNCS, vol. 11807, pp. 3\u201317. Springer, Cham (2019). https:\/\/doi.org\/10.1007\/978-3-030-32047-8_1"},{"key":"17_CR11","unstructured":"Ciaccia, P., Patella, M., Zezula, P.: M-tree: an efficient access method for similarity search in metric spaces. In: VLDB, pp. 426\u2013435. Morgan Kaufmann (1997)"},{"key":"17_CR12","doi-asserted-by":"crossref","unstructured":"Datar, M., Immorlica, N., Indyk, P., Mirrokni, V.S.: Locality-sensitive hashing scheme based on p-stable distributions. In: SCG, pp. 253\u2013262. ACM (2004)","DOI":"10.1145\/997817.997857"},{"issue":"1","key":"17_CR13","doi-asserted-by":"publisher","first-page":"19","DOI":"10.1006\/jagm.1997.0873","volume":"25","author":"M Dietzfelbinger","year":"1997","unstructured":"Dietzfelbinger, M., Hagerup, T., Katajainen, J., Penttonen, M.: A reliable randomized algorithm for the closest-pair problem. J. Algor. 25(1), 19\u201351 (1997)","journal-title":"J. Algor."},{"key":"17_CR14","doi-asserted-by":"crossref","unstructured":"Dong, W., Wang, Z., Josephson, W., Charikar, M., Li, K.: Modeling LSH for performance tuning. In: CIKM, pp. 669\u2013678. ACM (2008)","DOI":"10.1145\/1458082.1458172"},{"issue":"3","key":"17_CR15","doi-asserted-by":"publisher","first-page":"415","DOI":"10.1007\/s00778-015-0383-4","volume":"24","author":"Y Gao","year":"2015","unstructured":"Gao, Y., Chen, L., Li, X., Yao, B., Chen, G.: Efficient k-closest pair queries in general metric spaces. VLDB J. 24(3), 415\u2013439 (2015)","journal-title":"VLDB J."},{"issue":"1","key":"17_CR16","doi-asserted-by":"publisher","first-page":"321","DOI":"10.4086\/toc.2012.v008a014","volume":"8","author":"S Har-Peled","year":"2012","unstructured":"Har-Peled, S., Indyk, P., Motwani, R.: Approximate nearest neighbor: towards removing the curse of dimensionality. Theory Comput. 8(1), 321\u2013350 (2012)","journal-title":"Theory Comput."},{"key":"17_CR17","unstructured":"He, J., Kumar, S., Chang, S.: On the difficulty of nearest neighbor search. In: ICML. icml.cc\/Omnipress (2012)"},{"key":"17_CR18","doi-asserted-by":"crossref","unstructured":"Indyk, P., Motwani, R.: Approximate nearest neighbors: towards removing the curse of dimensionality. In: Proceedings of 30th Annual ACM Symposium on the Theory of Computing (STOC), pp. 604\u2013613 (1998)","DOI":"10.1145\/276698.276876"},{"issue":"3","key":"17_CR19","doi-asserted-by":"publisher","first-page":"535","DOI":"10.1109\/TBDATA.2019.2921572","volume":"7","author":"J Johnson","year":"2021","unstructured":"Johnson, J., Douze, M., J\u00e9gou, H.: Billion-scale similarity search with GPUS. IEEE Trans. Big Data 7(3), 535\u2013547 (2021)","journal-title":"IEEE Trans. Big Data"},{"key":"17_CR20","doi-asserted-by":"crossref","unstructured":"Li, P., K\u00f6nig, C.: B-Bit minwise hashing. In: WWW 2010, pp. 671\u2013680. ACM, New York (2010)","DOI":"10.1145\/1772690.1772759"},{"issue":"7","key":"17_CR21","doi-asserted-by":"publisher","first-page":"493","DOI":"10.14778\/2732286.2732287","volume":"7","author":"N Ntarmos","year":"2014","unstructured":"Ntarmos, N., Patlakas, I., Triantafillou, P.: Rank join queries in NOSQL databases. Proc. VLDB Endow. 7(7), 493\u2013504 (2014)","journal-title":"Proc. VLDB Endow."},{"issue":"3","key":"17_CR22","doi-asserted-by":"publisher","first-page":"1149","DOI":"10.1007\/s10044-018-0753-9","volume":"22","author":"M Pirbonyeh","year":"2019","unstructured":"Pirbonyeh, M., Rezaie, V., Parvin, H., Nejatian, S., Mehrabi, M.: A linear unsupervised transfer learning by preservation of cluster-and-neighborhood data organization. Pattern Anal. Appl. 22(3), 1149\u20131160 (2019)","journal-title":"Pattern Anal. Appl."},{"key":"17_CR23","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"803","DOI":"10.1007\/11408079_73","volume-title":"Database Systems for Advanced Applications","author":"T Skopal","year":"2005","unstructured":"Skopal, T., Pokorn\u00fd, J., Sn\u00e1\u0161el, V.: Nearest neighbours search using the PM-tree. In: Zhou, L., Ooi, B.C., Meng, X. (eds.) DASFAA 2005. LNCS, vol. 3453, pp. 803\u2013815. Springer, Heidelberg (2005). https:\/\/doi.org\/10.1007\/11408079_73"},{"key":"17_CR24","doi-asserted-by":"crossref","unstructured":"Tao, Y., Yi, K., Sheng, C., Kalnis, P.: Efficient and accurate nearest neighbor and closest pair search in high-dimensional space. ACM Trans. Database Syst. 35(3), 20:1\u201320:46 (2010)","DOI":"10.1145\/1806907.1806912"},{"issue":"19","key":"17_CR25","doi-asserted-by":"publisher","first-page":"14577","DOI":"10.1007\/s00500-020-04807-w","volume":"24","author":"H Wang","year":"2020","unstructured":"Wang, H., Yang, L., Xiao, Y.: Setjoin: a novel top-k similarity join algorithm. Soft. Comput. 24(19), 14577\u201314592 (2020)","journal-title":"Soft. Comput."},{"key":"17_CR26","doi-asserted-by":"crossref","unstructured":"Xiao, C., Wang, W., Lin, X., Shang, H.: Top-k set similarity joins. In: ICDE, pp. 916\u2013927. IEEE Computer Society (2009)","DOI":"10.1109\/ICDE.2009.111"},{"key":"17_CR27","doi-asserted-by":"crossref","unstructured":"Yang, Z., Zheng, B., Li, G., Zhao, X., Zhou, X., Jensen, C.S.: Adaptive top-k overlap set similarity joins. In: ICDE, pp. 1081\u20131092. IEEE (2020)","DOI":"10.1109\/ICDE48307.2020.00098"},{"issue":"6","key":"17_CR28","doi-asserted-by":"publisher","first-page":"1339","DOI":"10.1007\/s00778-021-00680-7","volume":"31","author":"B Zheng","year":"2022","unstructured":"Zheng, B., Zhao, X., Weng, L., Nguyen, Q.V.H., Liu, H., Jensen, C.S.: PM-LSH: a fast and accurate in-memory framework for high-dimensional approximate NN and closest pair search. VLDB J. 31(6), 1339\u20131363 (2022)","journal-title":"VLDB J."},{"issue":"6","key":"17_CR29","doi-asserted-by":"publisher","first-page":"559","DOI":"10.1109\/THMS.2017.2725341","volume":"48","author":"X Zhou","year":"2018","unstructured":"Zhou, X., Wu, B., Jin, Q.: Analysis of user network and correlation for community discovery based on topic-aware similarity and behavioral influence. IEEE Trans. Hum. Mach. Syst. 48(6), 559\u2013571 (2018)","journal-title":"IEEE Trans. Hum. Mach. Syst."}],"container-title":["Lecture Notes in Computer Science","Similarity Search and Applications"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-46994-7_17","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,10,26]],"date-time":"2023-10-26T07:04:47Z","timestamp":1698303887000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-46994-7_17"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023]]},"ISBN":["9783031469930","9783031469947"],"references-count":29,"URL":"http:\/\/dx.doi.org\/10.1007\/978-3-031-46994-7_17","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2023]]},"assertion":[{"value":"27 October 2023","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"SISAP","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Similarity Search and Applications","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Coruna","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Spain","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2023","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"9 October 2023","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"11 October 2023","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"16","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"sisap2023","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/www.sisap.org\/2023\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"EasyChair","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"33","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"16","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"4","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"48% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"2","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Familiarity, LaTeX and LNCS friendly, steering committee has subscription","order":10,"name":"additional_info_on_review_process","label":"Additional Info on Review Process","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}