iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://api.crossref.org/works/10.1007/978-3-031-43999-5_31
{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,6]],"date-time":"2024-10-06T01:16:37Z","timestamp":1728177397541},"publisher-location":"Cham","reference-count":32,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031439988"},{"type":"electronic","value":"9783031439995"}],"license":[{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2023]]},"DOI":"10.1007\/978-3-031-43999-5_31","type":"book-chapter","created":{"date-parts":[[2023,9,30]],"date-time":"2023-09-30T23:08:57Z","timestamp":1696115337000},"page":"323-332","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":3,"title":["DiffuseIR: Diffusion Models for\u00a0Isotropic Reconstruction of\u00a03D Microscopic Images"],"prefix":"10.1007","author":[{"given":"Mingjie","family":"Pan","sequence":"first","affiliation":[]},{"given":"Yulu","family":"Gan","sequence":"additional","affiliation":[]},{"given":"Fangxu","family":"Zhou","sequence":"additional","affiliation":[]},{"given":"Jiaming","family":"Liu","sequence":"additional","affiliation":[]},{"given":"Ying","family":"Zhang","sequence":"additional","affiliation":[]},{"given":"Aimin","family":"Wang","sequence":"additional","affiliation":[]},{"given":"Shanghang","family":"Zhang","sequence":"additional","affiliation":[]},{"given":"Dawei","family":"Li","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,10,1]]},"reference":[{"key":"31_CR1","doi-asserted-by":"publisher","DOI":"10.1016\/j.media.2022.102479","volume":"80","author":"H Chung","year":"2023","unstructured":"Chung, H., Chul Ye, J.: Score-based diffusion models for accelerated MRI. Med. Image Anal. 80, 102479 (2023)","journal-title":"Med. Image Anal."},{"key":"31_CR2","doi-asserted-by":"crossref","unstructured":"Csurka, G.: Domain adaptation for visual applications: a comprehensive survey. arXiv$$:$$ Computer Vision and Pattern Recognition (2017)","DOI":"10.1007\/978-3-319-58347-1"},{"key":"31_CR3","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"163","DOI":"10.1007\/978-3-030-59722-1_16","volume-title":"Medical Image Computing and Computer Assisted Intervention \u2013 MICCAI 2020","author":"S Deng","year":"2020","unstructured":"Deng, S., et al.: Isotropic reconstruction of 3D EM images with unsupervised degradation learning. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12265, pp. 163\u2013173. Springer, Cham (2020). https:\/\/doi.org\/10.1007\/978-3-030-59722-1_16"},{"key":"31_CR4","unstructured":"Dhariwal, P., Nichol, A.: Diffusion models beat GANs on image synthesis. In: Neural Information Processing Systems (2021)"},{"key":"31_CR5","unstructured":"Funke, J., S.: cremi.org. http:\/\/cremi.org\/"},{"key":"31_CR6","doi-asserted-by":"publisher","DOI":"10.1016\/j.cmpb.2022.106856","volume":"221","author":"V Gonz\u00e1lez-Ruiz","year":"2022","unstructured":"Gonz\u00e1lez-Ruiz, V., Garc\u00eda-Ortiz, J., Fern\u00e1ndez-Fern\u00e1ndez, M., Fern\u00e1ndez, J.J.: Optical flow driven interpolation for isotropic FIB-SEM reconstructions. Comput. Meth. Programs Biomed. 221, 106856 (2022)","journal-title":"Comput. Meth. Programs Biomed."},{"key":"31_CR7","unstructured":"Guan, H., Liu, M.: Domain adaptation for medical image analysis: a survey (2021)"},{"key":"31_CR8","doi-asserted-by":"publisher","first-page":"319","DOI":"10.1038\/nmeth.3292","volume":"12","author":"KJ Hayworth","year":"2015","unstructured":"Hayworth, K.J., et al.: Ultrastructurally smooth thick partitioning and volume stitching for large-scale connectomics. Nat. Methods 12, 319\u2013322 (2015)","journal-title":"Nat. Methods"},{"key":"31_CR9","doi-asserted-by":"crossref","unstructured":"Heinrich, L., Bogovic, J.A., Saalfeld, S.: Deep learning for isotropic super-resolution from non-isotropic 3d electron microscopy. medical image computing and computer assisted intervention (2017)","DOI":"10.1007\/978-3-319-66185-8_16"},{"key":"31_CR10","unstructured":"Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. In: Neural Information Processing Systems (2020)"},{"key":"31_CR11","unstructured":"Kawar, B., Elad, M., Ermon, S., Song, J.: Denoising diffusion restoration models (2023)"},{"key":"31_CR12","series-title":"LNCS","doi-asserted-by":"publisher","first-page":"539","DOI":"10.1007\/978-3-031-16431-6_51","volume-title":"MICCAI 2022","author":"B Kim","year":"2023","unstructured":"Kim, B., Chul, J.: Diffusion deformable model for 4d temporal medical image generation. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022. LNCS, vol. 13431, pp. 539\u2013548. Springer, Cham (2023). https:\/\/doi.org\/10.1007\/978-3-031-16431-6_51"},{"key":"31_CR13","series-title":"LNCS","doi-asserted-by":"publisher","first-page":"308","DOI":"10.1007\/978-3-031-19797-0_18","volume-title":"ECCV 2022","author":"X Li","year":"2022","unstructured":"Li, X., et al.: Efficient meta-tuning for content-aware neural video delivery. In: Avidan, S., Brostow, G., Ciss\u00e9, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13678, pp. 308\u2013324. Springer, Cham (2022). https:\/\/doi.org\/10.1007\/978-3-031-19797-0_18"},{"key":"31_CR14","doi-asserted-by":"publisher","unstructured":"Liu, J., et al.: Overfitting the data: compact neural video delivery via content-aware feature modulation. In: 2021 IEEE\/CVF International Conference on Computer Vision (ICCV) (2021). https:\/\/doi.org\/10.1109\/iccv48922.2021.00459","DOI":"10.1109\/iccv48922.2021.00459"},{"key":"31_CR15","unstructured":"Lu, C., Zhou, Y., Bao, F., Chen, J., Li, C., Zhu, J.: DPM-solver: a fast ode solver for diffusion probabilistic model sampling in around 10 steps (2022)"},{"key":"31_CR16","unstructured":"Lu, C., Zhou, Y., Bao, F., Chen, J., Li, C., Zhu, J.: Dpm-solver++: fast solver for guided sampling of diffusion probabilistic models (2022)"},{"key":"31_CR17","doi-asserted-by":"crossref","unstructured":"Lugmayr, A., Danelljan, M., Romero, A., Yu, F., Timofte, R., Gool, L.V.: Repaint: inpainting using denoising diffusion probabilistic models (2023)","DOI":"10.1109\/CVPR52688.2022.01117"},{"key":"31_CR18","doi-asserted-by":"publisher","first-page":"62","DOI":"10.3389\/fnana.2016.00062","volume":"10","author":"S Mikula","year":"2016","unstructured":"Mikula, S.: Progress towards mammalian whole-brain cellular connectomics. Front. Neuroanat. 10, 62 (2016)","journal-title":"Front. Neuroanat."},{"key":"31_CR19","unstructured":"Nichol, A., Dhariwal, P.: Improved denoising diffusion probabilistic models. arXiv$$:$$ Learning (2021)"},{"key":"31_CR20","unstructured":"\u00d6zbey, M., et al.: Unsupervised medical image translation with adversarial diffusion models (2022)"},{"key":"31_CR21","doi-asserted-by":"publisher","first-page":"3297","DOI":"10.1038\/s41467-022-30949-6","volume":"13","author":"H Park","year":"2021","unstructured":"Park, H., et al.: Deep learning enables reference-free isotropic super-resolution for volumetric fluorescence microscopy. Nature Commun. 13, 3297 (2021)","journal-title":"Nature Commun."},{"key":"31_CR22","doi-asserted-by":"crossref","unstructured":"Peng, C., Guo, P., Zhou, S.K., Patel, V., Chellappa, R.: Towards performant and reliable undersampled MR reconstruction via diffusion model sampling (2023)","DOI":"10.1007\/978-3-031-16446-0_59"},{"key":"31_CR23","doi-asserted-by":"publisher","first-page":"1013","DOI":"10.1038\/nmeth.2637","volume":"10","author":"T Schr\u00f6del","year":"2013","unstructured":"Schr\u00f6del, T., Prevedel, R., Aumayr, K., Zimmer, M., Vaziri, A.: Brain-wide 3d imaging of neuronal activity in caenorhabditis elegans with sculpted light. Nat. Meth. 10, 1013\u20131020 (2013)","journal-title":"Nat. Meth."},{"key":"31_CR24","unstructured":"Song, J., Meng, C., Ermon, S.: Denoising diffusion implicit models. arXiv$$:$$ Learning (2020)"},{"key":"31_CR25","unstructured":"Song, Y., Shen, L., Xing, L., Ermon, S.: Solving inverse problems in medical imaging with score-based generative models. Cornell University - arXiv (2021)"},{"key":"31_CR26","unstructured":"Su, X., Song, J., Meng, C., Ermon, S.: Dual diffusion implicit bridges for image-to-image translation (2023)"},{"key":"31_CR27","unstructured":"ya Takemura, S., et al.: Synaptic circuits and their variations within different columns in the visual system of drosophila. In: Proceedings of the National Academy of Sciences of the United States of America (2015)"},{"key":"31_CR28","doi-asserted-by":"publisher","first-page":"311","DOI":"10.1038\/nmeth1017","volume":"4","author":"PJ Verveer","year":"2007","unstructured":"Verveer, P.J., Swoger, J., Pampaloni, F., Greger, K., Marcello, M., Stelzer, E.H.K.: High-resolution three-dimensional imaging of large specimens with light sheet-based microscopy. Nat. Methods 4, 311\u2013313 (2007)","journal-title":"Nat. Methods"},{"key":"31_CR29","doi-asserted-by":"crossref","unstructured":"Weigert, M., Royer, L., Jug, F., Myers, G.: Isotropic reconstruction of 3D fluorescence microscopy images using convolutional neural networks. arXiv$$:$$ Computer Vision and Pattern Recognition (2017)","DOI":"10.1007\/978-3-319-66185-8_15"},{"key":"31_CR30","doi-asserted-by":"crossref","unstructured":"Weigert, M., et al.: Content-aware image restoration: pushing the limits of fluorescence microscopy. bioRxiv (2018)","DOI":"10.1101\/236463"},{"key":"31_CR31","doi-asserted-by":"publisher","first-page":"1323","DOI":"10.1038\/s41592-019-0622-5","volume":"16","author":"Y Wu","year":"2019","unstructured":"Wu, Y., et al.: Three-dimensional virtual refocusing of fluorescence microscopy images using deep learning. Nature Methods 16, 1323\u20131331 (2019)","journal-title":"Nature Methods"},{"key":"31_CR32","doi-asserted-by":"crossref","unstructured":"Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: International Conference on Computer Vision (2017)","DOI":"10.1109\/ICCV.2017.244"}],"container-title":["Lecture Notes in Computer Science","Medical Image Computing and Computer Assisted Intervention \u2013 MICCAI 2023"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-43999-5_31","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,3,11]],"date-time":"2024-03-11T14:46:23Z","timestamp":1710168383000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-43999-5_31"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023]]},"ISBN":["9783031439988","9783031439995"],"references-count":32,"URL":"http:\/\/dx.doi.org\/10.1007\/978-3-031-43999-5_31","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2023]]},"assertion":[{"value":"1 October 2023","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"MICCAI","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Medical Image Computing and Computer-Assisted Intervention","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Vancouver, BC","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Canada","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2023","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"8 October 2023","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"12 October 2023","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"miccai2023","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/conferences.miccai.org\/2023\/en\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Double-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"CMT","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"2250","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"730","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"32% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"5","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}