iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://api.crossref.org/works/10.1007/978-3-031-40286-9_27
{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,25]],"date-time":"2024-10-25T22:40:20Z","timestamp":1729896020599,"version":"3.28.0"},"publisher-location":"Cham","reference-count":32,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031402852"},{"type":"electronic","value":"9783031402869"}],"license":[{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2023]]},"DOI":"10.1007\/978-3-031-40286-9_27","type":"book-chapter","created":{"date-parts":[[2023,8,8]],"date-time":"2023-08-08T23:02:27Z","timestamp":1691535747000},"page":"331-342","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["GMiRec: A Multi-image Visual Recommendation Model Based on a Gated Neural Network"],"prefix":"10.1007","author":[{"ORCID":"http:\/\/orcid.org\/0000-0003-4373-3661","authenticated-orcid":false,"given":"Caihong","family":"Mu","sequence":"first","affiliation":[]},{"given":"Xin","family":"Tang","sequence":"additional","affiliation":[]},{"given":"Jiashen","family":"Luo","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-9993-0731","authenticated-orcid":false,"given":"Yi","family":"Liu","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,8,9]]},"reference":[{"issue":"1","key":"27_CR1","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1145\/3158369","volume":"52","author":"S Zhang","year":"2019","unstructured":"Zhang, S., Yao, L., Sun, A., et al.: Deep learning based recommender system: a survey and new perspectives. ACM Comput. Surv. 52(1), 1\u201338 (2019)","journal-title":"ACM Comput. Surv."},{"issue":"1","key":"27_CR2","doi-asserted-by":"publisher","first-page":"76","DOI":"10.1109\/MIC.2003.1167344","volume":"7","author":"G Linden","year":"2003","unstructured":"Linden, G., Smith, B., York, J.: Item-to-item collaborative filtering. IEEE Internet Comput. 7(1), 76\u201380 (2003)","journal-title":"IEEE Internet Comput."},{"issue":"8","key":"27_CR3","doi-asserted-by":"publisher","first-page":"30","DOI":"10.1109\/MC.2009.263","volume":"42","author":"Y Koren","year":"2009","unstructured":"Koren, Y., Bell, R., Volinsky, C.: Matrix factorization techniques for recommender systems. Computer 42(8), 30\u201337 (2009)","journal-title":"Computer"},{"issue":"1","key":"27_CR4","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1145\/1644873.1644874","volume":"4","author":"Y Koren","year":"2010","unstructured":"Koren, Y.: Factor in the neighbors: scalable and accurate collaborative filtering. ACM Trans. Knowl. Discov. Data 4(1), 1\u201324 (2010)","journal-title":"ACM Trans. Knowl. Discov. Data"},{"key":"27_CR5","doi-asserted-by":"crossref","unstructured":"Pan, R., Zhou, Y., Cao, B., et al.: One-class collaborative filtering. In: 8th IEEE International Conference on Data Mining, pp. 502\u2013511. IEEE, Piscataway (2008)","DOI":"10.1109\/ICDM.2008.16"},{"key":"27_CR6","doi-asserted-by":"crossref","unstructured":"He, X., Liao, L., Zhang, H., et al.: Neural collaborative filtering. In: 26th International Conference on World Wide Web Companion, pp.173\u2013182. ACM, New York (2017)","DOI":"10.1145\/3038912.3052569"},{"key":"27_CR7","doi-asserted-by":"crossref","unstructured":"He, X., Du, X., Wang, X., et al.: Outer product-based neural collaborative filtering. In: 27th International Joint Conference on Artificial Intelligence, pp. 2227\u20132233. ACM, New York (2018)","DOI":"10.24963\/ijcai.2018\/308"},{"key":"27_CR8","doi-asserted-by":"crossref","unstructured":"Truong, Q., Salah, A., Lauw, H.: Multi-modal recommender systems: hands-on exploration. In: 15th ACM Conference on Recommender Systems, pp. 834\u2013837. ACM, New York (2021)","DOI":"10.1145\/3460231.3473324"},{"key":"27_CR9","doi-asserted-by":"crossref","unstructured":"Liu, H., Lu, J., Yang, H., et al.: Category-specific CNN for visual-aware CTR prediction at JD. Com. In: 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 2686\u20132696. ACM, New York (2020)","DOI":"10.1145\/3394486.3403319"},{"issue":"6","key":"27_CR10","doi-asserted-by":"publisher","first-page":"84","DOI":"10.1145\/3065386","volume":"60","author":"A Krizhevsky","year":"2017","unstructured":"Krizhevsky, A., Sutskever, I., Hinton, G.: Imagenet classification with deep convolutional neural networks. Commun. ACM 60(6), 84\u201390 (2017)","journal-title":"Commun. ACM"},{"key":"27_CR11","doi-asserted-by":"crossref","unstructured":"He, K., Zhang, X., Ren, S., et al.: Deep residual learning for image recognition. In: 13th IEEE Conference on Computer Vision and Pattern Recognition, pp. 770\u2013778. IEEE, Piscataway (2016)","DOI":"10.1109\/CVPR.2016.90"},{"key":"27_CR12","unstructured":"Mo, K., Liu, B., Xiao, L., Li, Y., Jiang, J.: Image feature learning for cold start problem in display advertising. In: 24th International Conference on Artificial Intelligence, pp. 3728\u20133734. IJCAI, Buenos Aires Argentina (2015)"},{"key":"27_CR13","doi-asserted-by":"crossref","unstructured":"Zhao, Z., Li, L., Zhang, B., et al.: What you look matters? Offline evaluation of advertising creatives for cold-start problem. In: 28th ACM International Conference on Information and Knowledge Management, pp. 2605\u20132613. ACM, New York (2019)","DOI":"10.1145\/3357384.3357813"},{"key":"27_CR14","doi-asserted-by":"crossref","unstructured":"He, R., Mcauley, J.: VBPR: visual Bayesian personalized ranking from implicit feed-back. In: 16th AAAI Conference on Artificial Intelligence, pp. 144\u2013150. AAAI, Menlo Park (2016)","DOI":"10.1609\/aaai.v30i1.9973"},{"key":"27_CR15","doi-asserted-by":"crossref","unstructured":"Liu, Q., Wu, S., Wang, L.: Deepstyle: learning user preferences for visual recommendation. In: 40th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 841\u2013844. ACM, New York (2017)","DOI":"10.1145\/3077136.3080658"},{"key":"27_CR16","doi-asserted-by":"crossref","unstructured":"He, R., Mcauley, J.: Ups and downs: modeling the visual evolution of fashion trends with one-class collaborative filtering. In: 25th International Conference on World Wide Web, pp. 507\u2013517. WWW, Switzerland (2016)","DOI":"10.1145\/2872427.2883037"},{"key":"27_CR17","doi-asserted-by":"crossref","unstructured":"Yu, W., Zhang, H., He, X., et al.: Aesthetic-based clothing recommendation. In: 18th World Wide Web Conference, pp. 649\u2013658. WWW, Switzerland (2018)","DOI":"10.1145\/3178876.3186146"},{"issue":"4","key":"27_CR18","doi-asserted-by":"publisher","first-page":"495","DOI":"10.1007\/s00778-021-00651-y","volume":"30","author":"W Yu","year":"2021","unstructured":"Yu, W., et al.: Visually aware recommendation with aesthetic features. VLDB J. 30(4), 495\u2013513 (2021). https:\/\/doi.org\/10.1007\/s00778-021-00651-y","journal-title":"VLDB J."},{"key":"27_CR19","doi-asserted-by":"crossref","unstructured":"Zhang, F., Yuan, N., Lian, D., et al.: Collaborative knowledge base embedding for recommender systems. In: 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 353\u2013362. ACM, New York (2016)","DOI":"10.1145\/2939672.2939673"},{"key":"27_CR20","doi-asserted-by":"publisher","first-page":"68874","DOI":"10.1109\/ACCESS.2018.2879971","volume":"6","author":"X Chen","year":"2018","unstructured":"Chen, X., Zhao, P., Liu, Y., et al.: Exploiting visual contents in posters and still frames for movie recommendation. IEEE Access 6, 68874\u201368881 (2018)","journal-title":"IEEE Access"},{"key":"27_CR21","doi-asserted-by":"crossref","unstructured":"Wu, C., Wu, F., Qi, T., et al.: MM-Rec: visiolinguistic model empowered multimodal news recommendation. In: 45th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 2560\u20132564. ACM, New York (2022)","DOI":"10.1145\/3477495.3531896"},{"key":"27_CR22","doi-asserted-by":"crossref","unstructured":"Lei, C., Liu, D., Li, W., et al.: Comparative deep learning of hybrid representations for image recommendations. In: 13th Conference on Computer Vision and Pattern Recognition, pp. 2545\u20132553. IEEE, Piscataway (2016)","DOI":"10.1109\/CVPR.2016.279"},{"key":"27_CR23","doi-asserted-by":"crossref","unstructured":"Yilma, B., Leiva, L.: CuratorNet: visually-aware recommendation of art images. In: 23th Conference on Human Factors in Computing Systems, pp. 1\u201317. ACM, New York (2023)","DOI":"10.1145\/3544548.3581477"},{"key":"27_CR24","doi-asserted-by":"crossref","unstructured":"Sandler, M., Howard, A., Zhu, M., et al.: MobileNetV2: inverted residuals and linear bottlenecks. In: 15th IEEE Conference on Computer Vision and Pattern Recognition, pp. 4510\u20131520. IEEE, Piscataway (2018)","DOI":"10.1109\/CVPR.2018.00474"},{"key":"27_CR25","unstructured":"Boureau, Y., Ponce, J., LeCun, Y.: A theoretical analysis of feature pooling in visual recognition, pp. 111\u2013118. Omnipress, United States (2010)"},{"key":"27_CR26","unstructured":"Hein, A.: Identification and bridging of semantic gaps in the context of multi-domain engineering. In: 2010 Forum on Philosophy, Engineering & Technology, pp. 57\u201358 (2010)"},{"key":"27_CR27","unstructured":"Rendle, S., Feudenthaler, C., Ganther, Z., et al.: BPR: Bayesian personalized ranking from implicit feedback. In: 25th Conference on Uncertainty in Artificial Intelligence, pp. 452\u2013461. ACM, New York (2009)"},{"key":"27_CR28","doi-asserted-by":"crossref","unstructured":"Ni, J., Li, J., McAuley, J.: Justifying recommendations using distantly-labeled reviews and fine-grained aspects. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, pp. 188\u2013197. ACL, Stroudsburg (2019)","DOI":"10.18653\/v1\/D19-1018"},{"key":"27_CR29","unstructured":"Jonathan, O.: Product recommendation based on visual similarity. https:\/\/www.kaggle.com\/code\/jonathanoheix\/product-recommendation-based-on-visual-similarity. Accessed 1 Feb 2023"},{"key":"27_CR30","doi-asserted-by":"crossref","unstructured":"Niu, W., Ccaverlee, J., Lu, H.: Neural personalized ranking for image recommendation. In: 8th ACM International Conference on Web Search and Data Mining. ACM, New York (2018)","DOI":"10.1145\/3159652.3159728"},{"key":"27_CR31","unstructured":"Microsoft. Neural Network Intelligence. http:\/\/github.com\/Microsoft\/nni. Accessed 1 Feb 2023"},{"key":"27_CR32","unstructured":"Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)"}],"container-title":["Lecture Notes in Computer Science","Knowledge Science, Engineering and Management"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-40286-9_27","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,10,25]],"date-time":"2024-10-25T22:12:47Z","timestamp":1729894367000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-40286-9_27"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023]]},"ISBN":["9783031402852","9783031402869"],"references-count":32,"URL":"http:\/\/dx.doi.org\/10.1007\/978-3-031-40286-9_27","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2023]]},"assertion":[{"value":"9 August 2023","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"KSEM","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Knowledge Science, Engineering and Management","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Guangzhou","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"China","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2023","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"16 August 2023","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"18 August 2023","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"16","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"ksem2023","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/www.ksem2023.conferences.academy\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Easychair","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"395","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"114","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"30","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"29% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"2,5","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"5","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}