{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,23]],"date-time":"2024-10-23T04:28:24Z","timestamp":1729657704515,"version":"3.28.0"},"publisher-location":"Cham","reference-count":44,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031347757"},{"type":"electronic","value":"9783031347764"}],"license":[{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2023]]},"DOI":"10.1007\/978-3-031-34776-4_26","type":"book-chapter","created":{"date-parts":[[2023,6,26]],"date-time":"2023-06-26T09:03:04Z","timestamp":1687770184000},"page":"494-514","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["InnerEye: A Tale on\u00a0Images Filtered Using Instagram Filters - How Do We Interact with\u00a0them and\u00a0How Can We Automatically Identify the\u00a0Extent of\u00a0Filtering?"],"prefix":"10.1007","author":[{"given":"Gazi Abdur","family":"Rakib","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-0753-7858","authenticated-orcid":false,"given":"Rudaiba","family":"Adnin","sequence":"additional","affiliation":[]},{"given":"Shekh Ahammed Adnan","family":"Bashir","sequence":"additional","affiliation":[]},{"given":"Chashi Mahiul","family":"Islam","sequence":"additional","affiliation":[]},{"given":"Abir Mohammad","family":"Turza","sequence":"additional","affiliation":[]},{"given":"Saad","family":"Manzur","sequence":"additional","affiliation":[]},{"given":"Monowar Anjum","family":"Rashik","sequence":"additional","affiliation":[]},{"given":"Abdus Salam","family":"Azad","sequence":"additional","affiliation":[]},{"given":"Tusher","family":"Chakraborty","sequence":"additional","affiliation":[]},{"given":"Sydur","family":"Rahaman","sequence":"additional","affiliation":[]},{"given":"Muhammad Rayhan","family":"Shikder","sequence":"additional","affiliation":[]},{"given":"Syed Ishtiaque","family":"Ahmed","sequence":"additional","affiliation":[]},{"given":"A. B. M. Alim","family":"Al Islam","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,6,27]]},"reference":[{"key":"26_CR1","unstructured":"Agarwal, S., Varshney, L.R.: Limits of deepfake detection: a robust estimation viewpoint (2019)"},{"key":"26_CR2","unstructured":"Bandura, A.: Social cognitive theory of personality. In: Handbook of Personality, vol. 2, pp. 154\u201396 (1999)"},{"key":"26_CR3","unstructured":"Belkasoft: Belkasoft forgery detection module (2021). http:\/\/reveal-mklab.iti.gr\/reveal\/"},{"issue":"3","key":"26_CR4","doi-asserted-by":"publisher","first-page":"226","DOI":"10.1016\/j.diin.2013.04.007","volume":"10","author":"GK Birajdar","year":"2013","unstructured":"Birajdar, G.K., Mankar, V.H.: Digital image forgery detection using passive techniques: a survey. Digit. Investig. 10(3), 226\u2013245 (2013)","journal-title":"Digit. Investig."},{"key":"26_CR5","doi-asserted-by":"crossref","unstructured":"Boididou, C., Papadopoulos, S., Kompatsiaris, Y., Schifferes, S., Newman, N.: Challenges of computational verification in social multimedia. In: Proceedings of the 23rd International Conference on World Wide Web, pp. 743\u2013748 (2014)","DOI":"10.1145\/2567948.2579323"},{"issue":"9","key":"26_CR6","first-page":"15","volume":"16","author":"L Dearden","year":"2015","unstructured":"Dearden, L.: The fake refugee images that are being used to distort public opinion on asylum seekers. Independent 16(9), 15 (2015)","journal-title":"Independent"},{"key":"26_CR7","doi-asserted-by":"crossref","unstructured":"Farid, H., Bravo, M.J.: Image forensic analyses that elude the human visual system. In: Media Forensics and Security II, vol. 7541, pp. 52\u201361. SPIE (2010)","DOI":"10.1117\/12.837788"},{"key":"26_CR8","unstructured":"Frank, J., Eisenhofer, T., Lea, S., Fischer, A., Kolossa, D., Holz, T.: Leveraging frequency analysis for deep fake image recognition (2020)"},{"key":"26_CR9","unstructured":"Fridrich, J.A., Soukal, D.B., Luk\u00e1\u0161, J.A.: Detection of copy-move forgery in digital images. In: Proceedings of Digital Forensic Research Workshop. Citeseer (2003)"},{"key":"26_CR10","unstructured":"Gallagher, A.C.: Detection of linear and cubic interpolation in jpeg compressed images. In: The 2nd Canadian Conference on Computer and Robot Vision (CRV 2005), pp. 65\u201372. IEEE (2005)"},{"key":"26_CR11","first-page":"64","volume":"156","author":"A Gartus","year":"2015","unstructured":"Gartus, A., Klemer, N., Leder, H.: The effects of visual context and individual differences on perception and evaluation of modern art and graffiti art. Acta Physiol. (Oxf) 156, 64\u201376 (2015)","journal-title":"Acta Physiol. (Oxf)"},{"key":"26_CR12","unstructured":"Google: Google landmarks dataset (2020). https:\/\/www.kaggle.com\/google\/google-landmarks-dataset"},{"issue":"8","key":"26_CR13","doi-asserted-by":"publisher","first-page":"1932","DOI":"10.1109\/TIFS.2018.2806926","volume":"13","author":"Y Guo","year":"2018","unstructured":"Guo, Y., Cao, X., Zhang, W., Wang, R.: Fake colorized image detection. IEEE Trans. Inf. Forensics Secur. 13(8), 1932\u20131944 (2018)","journal-title":"IEEE Trans. Inf. Forensics Secur."},{"key":"26_CR14","doi-asserted-by":"crossref","unstructured":"Gupta, A., Lamba, H., Kumaraguru, P., Joshi, A.: Faking sandy: characterizing and identifying fake images on twitter during hurricane sandy. In: Proceedings of the 22nd International Conference on World Wide Web, pp. 729\u2013736 (2013)","DOI":"10.1145\/2487788.2488033"},{"key":"26_CR15","doi-asserted-by":"crossref","unstructured":"Huang, X., Liu, M.Y., Belongie, S., Kautz, J.: Multimodal unsupervised image-to-image translation. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 172\u2013189 (2018)","DOI":"10.1007\/978-3-030-01219-9_11"},{"key":"26_CR16","doi-asserted-by":"crossref","unstructured":"Huh, M., Liu, A., Owens, A., Efros, A.A.: Fighting fake news: image splice detection via learned self-consistency. In: Proceedings of the European Conference on Computer Vision, pp. 101\u2013117 (2018)","DOI":"10.1007\/978-3-030-01252-6_7"},{"key":"26_CR17","unstructured":"Jang-Hee, Y., Kim, Y., Kyoungho, C., Soonyoung, P., Moon, K.Y.: Method and apparatus for determining fake image (2013). US Patent 8,515,124"},{"key":"26_CR18","unstructured":"Kamakura, A.: pilgram 1.1.0 (2019). https:\/\/pypi.org\/project\/pilgram\/"},{"key":"26_CR19","doi-asserted-by":"crossref","unstructured":"Kasra, M., Shen, C., O\u2019Brien, J.F.: Seeing is believing: how people fail to identify fake images on the web. In: Extended Abstracts of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1\u20136 (2018)","DOI":"10.1145\/3170427.3188604"},{"issue":"1","key":"26_CR20","doi-asserted-by":"publisher","first-page":"93","DOI":"10.1080\/15213269.2016.1257392","volume":"21","author":"M Kleemans","year":"2018","unstructured":"Kleemans, M., Daalmans, S., Carbaat, I., Ansch\u00fctz, D.: Picture perfect: the direct effect of manipulated instagram photos on body image in adolescent girls. Media Psychol. 21(1), 93\u2013110 (2018)","journal-title":"Media Psychol."},{"key":"26_CR21","unstructured":"Krawetz, D.N.: Fotoforensics (2021). http:\/\/fotoforensics.com\/"},{"issue":"2\u20133","key":"26_CR22","doi-asserted-by":"publisher","first-page":"60","DOI":"10.1145\/1161345.1161355","volume":"37","author":"Y Lee","year":"2006","unstructured":"Lee, Y., Lee, J., Lee, Z.: Social influence on technology acceptance behavior: self-identity theory perspective. ACM SIGMIS Database DATABASE Adv. Inf. Syst. 37(2\u20133), 60\u201375 (2006)","journal-title":"ACM SIGMIS Database DATABASE Adv. Inf. Syst."},{"issue":"1","key":"26_CR23","doi-asserted-by":"publisher","first-page":"186","DOI":"10.1016\/j.tele.2017.10.011","volume":"35","author":"E Lowe-Calverley","year":"2018","unstructured":"Lowe-Calverley, E., Grieve, R.: Self-ie love: predictors of image editing intentions on Facebook. Telematics Inform. 35(1), 186\u2013194 (2018)","journal-title":"Telematics Inform."},{"key":"26_CR24","doi-asserted-by":"crossref","unstructured":"Luo, W., Huang, J., Qiu, G.: Robust detection of region-duplication forgery in digital image. In: 18th International Conference on Pattern Recognition (ICPR 2006), vol. 4, pp. 746\u2013749. IEEE (2006)","DOI":"10.1109\/ICPR.2006.1003"},{"key":"26_CR25","doi-asserted-by":"crossref","unstructured":"Maigrot, C., Kijak, E., Claveau, V.: Context-aware forgery localization in social-media images: a feature-based approach evaluation. In: 2018 25th IEEE International Conference on Image Processing (ICIP), pp. 545\u2013549. IEEE (2018)","DOI":"10.1109\/ICIP.2018.8451726"},{"key":"26_CR26","unstructured":"Manovich, L.: Instagram and contemporary image. CUNY, Nova Iorque (2017)"},{"key":"26_CR27","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-319-45699-7","volume-title":"Innovative Technologies in Everyday Life","author":"O Marques","year":"2016","unstructured":"Marques, O.: Innovative Technologies in Everyday Life. Springer, Cham (2016). https:\/\/doi.org\/10.1007\/978-3-319-45699-7"},{"key":"26_CR28","doi-asserted-by":"crossref","unstructured":"Marra, F., Gragnaniello, D., Cozzolino, D., Verdoliva, L.: Detection of GAN-generated fake images over social networks. In: 2018 IEEE Conference on Multimedia Information Processing and Retrieval (MIPR), pp. 384\u2013389 (2018)","DOI":"10.1109\/MIPR.2018.00084"},{"key":"26_CR29","unstructured":"Messieh, N.: How instagram filters work, and can you tell the difference? (2018). https:\/\/www.makeuseof.com\/tag\/instagram-filters-work-can-tell-difference\/"},{"key":"26_CR30","doi-asserted-by":"crossref","unstructured":"Murthy, D., Gross, A., McGarry, M.: Visual social media and big data. Interpreting instagram images posted on twitter. Digit. Cult. Soc. 2(2), 113\u2013134 (2016)","DOI":"10.14361\/dcs-2016-0208"},{"key":"26_CR31","unstructured":"Nguyen, T., Nguyen, C.M., Nguyen, T., Nguyen, D., Nahavandi, S.: Deep learning for deepfakes creation and detection: a survey (2019)"},{"issue":"1","key":"26_CR32","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1186\/s41235-017-0067-2","volume":"2","author":"SJ Nightingale","year":"2017","unstructured":"Nightingale, S.J., Wade, K.A., Watson, D.G.: Can people identify original and manipulated photos of real-world scenes? Cogn. Res. Principles Implications 2(1), 1\u201321 (2017). https:\/\/doi.org\/10.1186\/s41235-017-0067-2","journal-title":"Cogn. Res. Principles Implications"},{"key":"26_CR33","unstructured":"Omnicore: Instagram statistics (2022). https:\/\/www.omnicoreagency.com\/instagram-statistics\/"},{"key":"26_CR34","doi-asserted-by":"crossref","unstructured":"Papadopoulou, O., Zampoglou, M., Papadopoulos, S., Kompatsiaris, Y.: Web video verification using contextual cues. In: Proceedings of the 2nd International Workshop on Multimedia Forensics and Security, pp. 6\u201310 (2017)","DOI":"10.1145\/3078897.3080535"},{"key":"26_CR35","unstructured":"R\u00f6ssler, A., Cozzolino, D., Verdoliva, L., Riess, C., Thies, J., Nie\u00dfner, M.: Faceforensics: a large-scale video dataset for forgery detection in human faces. arXiv (2018)"},{"volume-title":"Digital Photography Best Practices and Workflow Handbook: A Guide to Staying Ahead of the Workflow Curve","year":"2010","author":"P Russotti","key":"26_CR36","unstructured":"Russotti, P., Anderson, R.: Digital Photography Best Practices and Workflow Handbook: A Guide to Staying Ahead of the Workflow Curve. Taylor & Francis, Milton Park (2010)"},{"key":"26_CR37","unstructured":"Statista: Instagram number of daily active instagram stories statistics (2021). https:\/\/www.statista.com\/statistics\/730315\/instagram-stories-dau\/"},{"key":"26_CR38","unstructured":"Statista: Instagram number of monthly active user statistics (2021). https:\/\/www.statista.com\/statistics\/253577\/number-of-monthly-active-instagram-users\/"},{"key":"26_CR39","doi-asserted-by":"crossref","unstructured":"Tariq, S., Lee, S., Kim, H., Shin, Y., Woo, S.S.: Detecting both machine and human created fake face images in the wild. In: Proceedings of the 2nd International Workshop on Multimedia Privacy and Security, pp. 81\u201387 (2018)","DOI":"10.1145\/3267357.3267367"},{"key":"26_CR40","unstructured":"Wagner, J.: Forensically (2021). https:\/\/29a.ch\/photo-forensics\/"},{"key":"26_CR41","doi-asserted-by":"crossref","unstructured":"Wu, Y., AbdAlmageed, W., Natarajan, P.: Mantra-net: manipulation tracing network for detection and localization of image forgeries with anomalous features. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 9543\u20139552 (2019)","DOI":"10.1109\/CVPR.2019.00977"},{"key":"26_CR42","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"134","DOI":"10.1007\/978-3-030-31456-9_15","volume-title":"Biometric Recognition","author":"X Xuan","year":"2019","unstructured":"Xuan, X., Peng, B., Wang, W., Dong, J.: On the generalization of GAN image forensics. In: Sun, Z., He, R., Feng, J., Shan, S., Guo, Z. (eds.) CCBR 2019. LNCS, vol. 11818, pp. 134\u2013141. Springer, Cham (2019). https:\/\/doi.org\/10.1007\/978-3-030-31456-9_15"},{"key":"26_CR43","unstructured":"Zampoglou, M.: Reveal - image verification assistant (2021). http:\/\/reveal-mklab.iti.gr\/reveal\/"},{"key":"26_CR44","doi-asserted-by":"crossref","unstructured":"Zhou, P., Han, X., Morariu, V.I., Davis, L.S.: Learning rich features for image manipulation detection. In: 2018 IEEE\/CVF Conference on Computer Vision and Pattern Recognition, vol. 9, pp. 1053\u20131061 (2018)","DOI":"10.1109\/CVPR.2018.00116"}],"container-title":["Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering","Mobile and Ubiquitous Systems: Computing, Networking and Services"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-34776-4_26","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,10,23]],"date-time":"2024-10-23T02:06:19Z","timestamp":1729649179000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-34776-4_26"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023]]},"ISBN":["9783031347757","9783031347764"],"references-count":44,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-34776-4_26","relation":{},"ISSN":["1867-8211","1867-822X"],"issn-type":[{"type":"print","value":"1867-8211"},{"type":"electronic","value":"1867-822X"}],"subject":[],"published":{"date-parts":[[2023]]},"assertion":[{"value":"27 June 2023","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"MobiQuitous","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Mobile and Ubiquitous Systems: Computing, Networking, and Services","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Pittsburgh, PA","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"USA","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2022","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"14 November 2022","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"17 November 2022","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"19","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"mobiquitous2022","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/mobiquitous.eai-conferences.org\/2022\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Double-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Confy Plus","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"95","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"26","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"2","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"27% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3.2","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"7.4","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"No","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}