{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,13]],"date-time":"2024-09-13T03:18:24Z","timestamp":1726197504280},"publisher-location":"Cham","reference-count":39,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031328824"},{"type":"electronic","value":"9783031328831"}],"license":[{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2023]]},"DOI":"10.1007\/978-3-031-32883-1_42","type":"book-chapter","created":{"date-parts":[[2023,5,21]],"date-time":"2023-05-21T19:03:16Z","timestamp":1684695796000},"page":"467-476","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Adversarial Learning for Improved Patient Representations"],"prefix":"10.1007","author":[{"given":"Bharath","family":"Shankar","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-5522-4058","authenticated-orcid":false,"given":"Carol Anne","family":"Hargreaves","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,5,22]]},"reference":[{"issue":"6","key":"42_CR1","doi-asserted-by":"publisher","first-page":"732","DOI":"10.1136\/amiajnl-2010-000019","volume":"18","author":"JM Holroyd-Leduc","year":"2011","unstructured":"Holroyd-Leduc, J.M., Lorenzetti, D., Straus, S.E., Sykes, L., Quan, H.: The impact of the electronic medical record on structure, process, and outcomes within primary care: a systematic review of the evidence. J. Am. Med. Inform. Assoc. 18(6), 732\u2013737 (2011). https:\/\/doi.org\/10.1136\/amiajnl-2010-000019","journal-title":"J. Am. Med. Inform. Assoc."},{"issue":"4","key":"42_CR2","doi-asserted-by":"publisher","first-page":"230","DOI":"10.1136\/svn-2017-000101","volume":"2","author":"F Jiang","year":"2017","unstructured":"Jiang, F., et al.: Artificial intelligence in healthcare: past, present and future. Stroke Vasc. Neurol. 2(4), 230\u2013243 (2017). https:\/\/doi.org\/10.1136\/svn-2017-000101","journal-title":"Stroke Vasc. Neurol."},{"issue":"1","key":"42_CR3","doi-asserted-by":"publisher","first-page":"14","DOI":"10.1038\/s41591-018-0320-3","volume":"25","author":"B Norgeot","year":"2019","unstructured":"Norgeot, B., Glicksberg, B.S., Butte, A.J.: A call for deep-learning healthcare. Nat. Med. 25(1), 14\u201315 (2019). https:\/\/doi.org\/10.1038\/s41591-018-0320-3","journal-title":"Nat. Med."},{"key":"42_CR4","doi-asserted-by":"publisher","first-page":"113","DOI":"10.1007\/978-3-030-28553-1_6","volume-title":"Nature-Inspired Computation in Data Mining and Machine Learning","author":"M Alloghani","year":"2020","unstructured":"Alloghani, M., Baker, T., Al-Jumeily, D., Hussain, A., Mustafina, J., Aljaaf, A.J.: Prospects of machine and deep learning in analysis of vital signs for the improvement of healthcare services. In: Yang, X.-S., He, X.-S. (eds.) Nature-Inspired Computation in Data Mining and Machine Learning, pp. 113\u2013136. Springer, Cham (2020). https:\/\/doi.org\/10.1007\/978-3-030-28553-1_6"},{"issue":"1","key":"42_CR5","doi-asserted-by":"publisher","first-page":"184","DOI":"10.1186\/s12911-021-01546-2","volume":"21","author":"C Che","year":"2021","unstructured":"Che, C., Zhang, P., Zhu, M., Qu, Y., Jin, B.: Constrained transformer network for ECG signal processing and arrhythmia classification. BMC Med. Inform. Decis. Mak. 21(1), 184 (2021). https:\/\/doi.org\/10.1186\/s12911-021-01546-2","journal-title":"BMC Med. Inform. Decis. Mak."},{"key":"42_CR6","doi-asserted-by":"publisher","unstructured":"Hosseini, M.-P., Tran, T.X., Pompili, D., Elisevich, K., Soltanian-Zadeh, H.: Deep learning with edge computing for localization of epileptogenicity using multimodal rs-fMRI and EEG big data. In: 2017 IEEE International Conference on Autonomic Computing (ICAC), pp. 83\u201392 (2017).https:\/\/doi.org\/10.1109\/ICAC.2017.41","DOI":"10.1109\/ICAC.2017.41"},{"key":"42_CR7","unstructured":"Lai, M.: Deep Learning for Medical Image Segmentation (2015). http:\/\/arxiv.org\/abs\/1505.02000"},{"key":"42_CR8","doi-asserted-by":"publisher","first-page":"103671","DOI":"10.1016\/j.jbi.2020.103671","volume":"115","author":"Y Si","year":"2021","unstructured":"Si, Y., et al.: Deep representation learning of patient data from Electronic Health Records (EHR): a systematic review. J. Biomed. Inform. 115, 103671 (2021). https:\/\/doi.org\/10.1016\/j.jbi.2020.103671","journal-title":"J. Biomed. Inform."},{"key":"42_CR9","doi-asserted-by":"publisher","unstructured":"Che, Z., Kale, D., Li, W., Bahadori, M.T., Liu, Y.: Deep computational phenotyping. In: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 507\u2013516 (2015). https:\/\/doi.org\/10.1145\/2783258.2783365","DOI":"10.1145\/2783258.2783365"},{"key":"42_CR10","doi-asserted-by":"publisher","unstructured":"Miotto, R., Li, L., Kidd, B.A., Dudley, J.T.: Deep patient: an unsupervised representation to predict the future of patients from the electronic health records. Sci. Rep. 6(1), Article 1 (2016). https:\/\/doi.org\/10.1038\/srep26094","DOI":"10.1038\/srep26094"},{"key":"42_CR11","doi-asserted-by":"publisher","unstructured":"Cheng, Y., Wang, F., Zhang, P., Hu, J.: Risk prediction with electronic health records: a deep learning approach. In: Proceedings of the 2016 SIAM International Conference on Data Mining (SDM), pp. 432\u2013440. Society for Industrial and Applied Mathematics (2016). https:\/\/doi.org\/10.1137\/1.9781611974348.49","DOI":"10.1137\/1.9781611974348.49"},{"key":"42_CR12","unstructured":"Choi, Y., Chiu, C.Y.-I., Sontag, D.: Learning low-dimensional representations of medical concepts. In: AMIA Summits on Translational Science Proceedings, pp. 41\u201350 (2016)"},{"key":"42_CR13","unstructured":"[1706.03762] Attention Is All You Need (n.d.). https:\/\/arxiv.org\/abs\/1706.03762. Retrieved 5 November 2022"},{"key":"42_CR14","doi-asserted-by":"publisher","unstructured":"Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding (2019). https:\/\/doi.org\/10.48550\/arXiv.1810.04805","DOI":"10.48550\/arXiv.1810.04805"},{"key":"42_CR15","doi-asserted-by":"publisher","unstructured":"Dosovitskiy, A., et al.: An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale (2021). https:\/\/doi.org\/10.48550\/arXiv.2010.11929","DOI":"10.48550\/arXiv.2010.11929"},{"key":"42_CR16","doi-asserted-by":"publisher","unstructured":"Li, Y., et al.: BEHRT: transformer for electronic health records. Sci. Rep. 10(1), Article 1 (2020). https:\/\/doi.org\/10.1038\/s41598-020-62922-y","DOI":"10.1038\/s41598-020-62922-y"},{"key":"42_CR17","doi-asserted-by":"publisher","unstructured":"Song, H., Rajan, D., Thiagarajan, J., Spanias, A.: Attend and diagnose: clinical time series analysis using attention models. In: Proceedings of the AAAI Conference on Artificial Intelligence, 32(1), Article 1 (2018). https:\/\/doi.org\/10.1609\/aaai.v32i1.11635","DOI":"10.1609\/aaai.v32i1.11635"},{"issue":"1","key":"42_CR18","doi-asserted-by":"publisher","first-page":"606","DOI":"10.1609\/aaai.v34i01.5400","volume":"34","author":"E Choi","year":"2020","unstructured":"Choi, E., et al.: Learning the graphical structure of electronic health records with graph convolutional transformer. Proc. AAAI Conf. Artif. Intell. 34(1), 606\u2013613 (2020). https:\/\/doi.org\/10.1609\/aaai.v34i01.5400","journal-title":"Proc. AAAI Conf. Artif. Intell."},{"key":"42_CR19","unstructured":"Srivastava, N., Salakhutdinov, R.: Learning Representations for Multimodal Data with Deep Belief Nets 8 (n.d.)"},{"issue":"11","key":"42_CR20","doi-asserted-by":"publisher","first-page":"3137","DOI":"10.1109\/TMM.2018.2823900","volume":"20","author":"Y-G Jiang","year":"2018","unstructured":"Jiang, Y.-G., Wu, Z., Tang, J., Li, Z., Xue, X., Chang, S.-F.: Modeling multimodal clues in a hybrid deep learning framework for video classification. IEEE Trans. Multimedia 20(11), 3137\u20133147 (2018). https:\/\/doi.org\/10.1109\/TMM.2018.2823900","journal-title":"IEEE Trans. Multimedia"},{"issue":"14","key":"42_CR21","doi-asserted-by":"publisher","first-page":"i446","DOI":"10.1093\/bioinformatics\/btz342","volume":"35","author":"A Cheerla","year":"2019","unstructured":"Cheerla, A., Gevaert, O.: Deep learning with multimodal representation for pancancer prognosis prediction. Bioinformatics 35(14), i446\u2013i454 (2019). https:\/\/doi.org\/10.1093\/bioinformatics\/btz342","journal-title":"Bioinformatics"},{"key":"42_CR22","doi-asserted-by":"publisher","unstructured":"Vale-Silva, L.A., Rohr, K.: Long-term cancer survival prediction using multimodal deep learning. Sci. Rep. 11(1), Article 1 (2021). https:\/\/doi.org\/10.1038\/s41598-021-92799-4","DOI":"10.1038\/s41598-021-92799-4"},{"issue":"8","key":"42_CR23","doi-asserted-by":"publisher","first-page":"3121","DOI":"10.1109\/JBHI.2021.3063721","volume":"25","author":"Y Meng","year":"2021","unstructured":"Meng, Y., Speier, W., Ong, M.K., Arnold, C.W.: Bidirectional representation learning from transformers using multimodal electronic health record data to predict depression. IEEE J. Biomed. Health Inform. 25(8), 3121\u20133129 (2021). https:\/\/doi.org\/10.1109\/JBHI.2021.3063721","journal-title":"IEEE J. Biomed. Health Inform."},{"key":"42_CR24","doi-asserted-by":"publisher","unstructured":"Mai, S., Hu, H., Xing, S.: Modality to Modality Translation: An Adversarial Representation Learning and Graph Fusion Network for Multimodal Fusion (2020). https:\/\/doi.org\/10.48550\/arXiv.1911.07848","DOI":"10.48550\/arXiv.1911.07848"},{"key":"42_CR25","doi-asserted-by":"publisher","first-page":"105874","DOI":"10.1016\/j.cmpb.2020.105874","volume":"199","author":"M De Bois","year":"2021","unstructured":"De Bois, M., El Yacoubi, M.A., Ammi, M.: Adversarial multi-source transfer learning in healthcare: application to glucose prediction for diabetic people. Comput. Methods Programs Biomed. 199, 105874 (2021). https:\/\/doi.org\/10.1016\/j.cmpb.2020.105874","journal-title":"Comput. Methods Programs Biomed."},{"key":"42_CR26","doi-asserted-by":"publisher","unstructured":"Zhang, X., et al.: Learning robust patient representations from multi-modal electronic health records: a supervised deep learning approach. In: Proceedings of the 2021 SIAM International Conference on Data Mining (SDM), pp. 585\u2013593 (2020). https:\/\/doi.org\/10.1137\/1.9781611976700.66","DOI":"10.1137\/1.9781611976700.66"},{"key":"42_CR27","doi-asserted-by":"publisher","unstructured":"Johnson, A.E.W., et al.: MIMIC-III, a freely accessible critical care database. Sci. Data 3(1), Article 1 (2016). https:\/\/doi.org\/10.1038\/sdata.2016.35","DOI":"10.1038\/sdata.2016.35"},{"key":"42_CR28","doi-asserted-by":"publisher","unstructured":"Kazemi, S.M., et al.: Time2Vec: Learning a Vector Representation of Time (2019). https:\/\/doi.org\/10.48550\/arXiv.1907.05321","DOI":"10.48550\/arXiv.1907.05321"},{"key":"42_CR29","doi-asserted-by":"publisher","unstructured":"Tipirneni, S., Reddy, C.K.: Self-Supervised Transformer for Sparse and Irregularly Sampled Multivariate Clinical Time-Series (2022). https:\/\/doi.org\/10.48550\/arXiv.2107.14293","DOI":"10.48550\/arXiv.2107.14293"},{"key":"42_CR30","doi-asserted-by":"publisher","unstructured":"Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P., Soricut, R.: ALBERT: A Lite BERT for Self-supervised Learning of Language Representations (2022). https:\/\/doi.org\/10.48550\/arXiv.1909.11942","DOI":"10.48550\/arXiv.1909.11942"},{"key":"42_CR31","unstructured":"Ganin, Y., Lempitsky, V.: Unsupervised Domain Adaptation by Backpropagation (2015). http:\/\/arxiv.org\/abs\/1409.7495"},{"key":"42_CR32","unstructured":"NVIDIA Tesla V100|NVIDIA (n.d.): https:\/\/www.nvidia.com\/en-gb\/data-center\/tesla-v100\/. Retrieved 21 November 2022"},{"key":"42_CR33","unstructured":"HPC \u2013 NUS Information Technology (n.d.): https:\/\/nusit.nus.edu.sg\/hpc\/. Retrieved November 21, 2022"},{"key":"42_CR34","doi-asserted-by":"publisher","unstructured":"Li, L., et al.: A System for Massively Parallel Hyperparameter Tuning (2020). https:\/\/doi.org\/10.48550\/arXiv.1810.05934","DOI":"10.48550\/arXiv.1810.05934"},{"key":"42_CR35","unstructured":"Liaw, R., Liang, E., Nishihara, R., Moritz, P., Gonzalez, J.E., Stoica, I.: Tune: A Research Platform for Distributed Model Selection and Training (2018). http:\/\/arxiv.org\/abs\/1807.05118"},{"key":"42_CR36","doi-asserted-by":"publisher","unstructured":"Pollard, T.J., Johnson, A.E.W., Raffa, J.D., Celi, L.A., Mark, R.G., Badawi, O.: The eICU Collaborative Research Database, a freely available multi-center database for critical care research. Sci. Data 5(1), Article 1 (2018). https:\/\/doi.org\/10.1038\/sdata.2018.178","DOI":"10.1038\/sdata.2018.178"},{"key":"42_CR37","doi-asserted-by":"publisher","unstructured":"Alistair, J., Lucas, B., Tom, P., Steven, H., Leo Anthony, C., Roger, M.: MIMIC-IV (2.1). PhysioNet (n.d.). https:\/\/doi.org\/10.13026\/RRGF-XW32","DOI":"10.13026\/RRGF-XW32"},{"key":"42_CR38","unstructured":"Multimodal Data Fusion Based on Mutual Information. IEEE Journals & Magazine. IEEE Xplore (n.d.). https:\/\/ieeexplore.ieee.org\/document\/6095545. Retrieved November 21, 2022"},{"key":"42_CR39","unstructured":"Mai, S., Hu, H., Xing, S.: Modality to Modality Translation: An Adversarial Representation Learning and Graph Fusion Network for Multimodal Fusion (2019). http:\/\/arxiv.org\/abs\/1911.07848"}],"container-title":["Lecture Notes in Computer Science","Augmented Intelligence and Intelligent Tutoring Systems"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-32883-1_42","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,5,21]],"date-time":"2023-05-21T19:12:19Z","timestamp":1684696339000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-32883-1_42"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023]]},"ISBN":["9783031328824","9783031328831"],"references-count":39,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-32883-1_42","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2023]]},"assertion":[{"value":"22 May 2023","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ITS","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Intelligent Tutoring Systems","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Corfu","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Greece","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2023","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2 June 2023","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"5 June 2023","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"19","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"its2023","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/iis-international.org\/its2023\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Double-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Easy chair","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"84","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"41","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"19","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"49% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}