{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,13]],"date-time":"2024-09-13T00:01:58Z","timestamp":1726185718755},"publisher-location":"Cham","reference-count":22,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031234422"},{"type":"electronic","value":"9783031234439"}],"license":[{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2022]]},"DOI":"10.1007\/978-3-031-23443-9_42","type":"book-chapter","created":{"date-parts":[[2023,1,26]],"date-time":"2023-01-26T23:29:01Z","timestamp":1674775741000},"page":"447-456","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Detecting Respiratory Motion Artefacts for\u00a0Cardiovascular MRIs to\u00a0Ensure High-Quality Segmentation"],"prefix":"10.1007","author":[{"ORCID":"http:\/\/orcid.org\/0000-0003-0783-6903","authenticated-orcid":false,"given":"Amin","family":"Ranem","sequence":"first","affiliation":[]},{"given":"John","family":"Kalkhof","sequence":"additional","affiliation":[]},{"given":"Caner","family":"\u00d6zer","sequence":"additional","affiliation":[]},{"given":"Anirban","family":"Mukhopadhyay","sequence":"additional","affiliation":[]},{"given":"Ilkay","family":"Oksuz","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,1,28]]},"reference":[{"key":"42_CR1","doi-asserted-by":"publisher","unstructured":"Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: a next-generation hyperparameter optimization framework. In: Teredesai, A., Kumar, V., Li, Y., Rosales, R., Terzi, E., Karypis, G. (eds.) Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD 2019, Anchorage, AK, USA, 4\u20138 August 2019, pp. 2623\u20132631. ACM (2019). https:\/\/doi.org\/10.1145\/3292500.3330701","DOI":"10.1145\/3292500.3330701"},{"key":"42_CR2","doi-asserted-by":"publisher","unstructured":"Cao, W., Mirjalili, V., Raschka, S.: Rank consistent ordinal regression for neural networks with application to age estimation. Pattern Recognit. Lett. 140, 325\u2013331 (2020). https:\/\/doi.org\/10.1016\/j.patrec.2020.11.008. https:\/\/www.sciencedirect.com\/science\/article\/pii\/S016786552030413X","DOI":"10.1016\/j.patrec.2020.11.008"},{"key":"42_CR3","unstructured":"Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. In: ICLR (2021)"},{"issue":"1","key":"42_CR4","doi-asserted-by":"publisher","first-page":"41","DOI":"10.1186\/1532-429X-15-41","volume":"15","author":"PF Ferreira","year":"2013","unstructured":"Ferreira, P.F., Gatehouse, P.D., Mohiaddin, R.H., Firmin, D.N.: Cardiovascular magnetic resonance artefacts. J. Cardiovasc. Magn. Reson. 15(1), 41 (2013)","journal-title":"J. Cardiovasc. Magn. Reson."},{"key":"42_CR5","doi-asserted-by":"crossref","unstructured":"Gonz\u00e1lez, C., Ranem, A., dos Santos, D.P., Othman, A., Mukhopadhyay, A.: Lifelong nnUNet: a framework for standardized medical continual learning (2022)","DOI":"10.21203\/rs.3.rs-1582100\/v1"},{"key":"42_CR6","doi-asserted-by":"crossref","unstructured":"He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770\u2013778 (2016)","DOI":"10.1109\/CVPR.2016.90"},{"key":"42_CR7","doi-asserted-by":"crossref","unstructured":"Isensee, F., et al.: nnU-Net: self-adapting framework for u-net-based medical image segmentation. arXiv preprint arXiv:1809.10486 (2018)","DOI":"10.1007\/978-3-658-25326-4_7"},{"key":"42_CR8","unstructured":"Isensee, F., Petersen, J., Kohl, S.A., J\u00e4ger, P.F., Maier-Hein, K.H.: nnU-Net: breaking the spell on successful medical image segmentation. arXiv preprint arXiv:1904.08128, vol. 1, pp. 1\u20138 (2019)"},{"key":"42_CR9","doi-asserted-by":"publisher","unstructured":"Karakam\u0131\u015f, K., \u00d6zer, C., \u00d6ks\u00fcz, \u0130.: Artifact detection in cardiac MRI data by deep learning methods. In: 2021 29th Signal Processing and Communications Applications Conference (SIU), pp. 1\u20134 (2021). https:\/\/doi.org\/10.1109\/SIU53274.2021.9477844","DOI":"10.1109\/SIU53274.2021.9477844"},{"issue":"1","key":"42_CR10","doi-asserted-by":"publisher","first-page":"252","DOI":"10.1016\/j.media.2011.08.003","volume":"16","author":"AP King","year":"2012","unstructured":"King, A.P., Buerger, C., Tsoumpas, C., Marsden, P.K., Schaeffter, T.: Thoracic respiratory motion estimation from MRI using a statistical model and a 2-D image navigator. Med. Image Anal. 16(1), 252\u2013264 (2012)","journal-title":"Med. Image Anal."},{"key":"42_CR11","doi-asserted-by":"publisher","unstructured":"Lin, T., Goyal, P., Girshick, R.B., He, K., Doll\u00e1r, P.: Focal loss for dense object detection. IEEE Trans. Pattern Anal. Mach. Intell. 42(2), 318\u2013327 (2020). https:\/\/doi.org\/10.1109\/TPAMI.2018.2858826","DOI":"10.1109\/TPAMI.2018.2858826"},{"key":"42_CR12","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"695","DOI":"10.1007\/978-3-030-32251-9_76","volume-title":"Medical Image Computing and Computer Assisted Intervention \u2013 MICCAI 2019","author":"I Oksuz","year":"2019","unstructured":"Oksuz, I., et al.: Detection and correction of cardiac MRI motion artefacts during reconstruction from k-space. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11767, pp. 695\u2013703. Springer, Cham (2019). https:\/\/doi.org\/10.1007\/978-3-030-32251-9_76"},{"issue":"12","key":"42_CR13","doi-asserted-by":"publisher","first-page":"4001","DOI":"10.1109\/TMI.2020.3008930","volume":"39","author":"I Oksuz","year":"2020","unstructured":"Oksuz, I., et al.: Deep learning-based detection and correction of cardiac MR motion artefacts during reconstruction for high-quality segmentation. IEEE Trans. Med. Imaging 39(12), 4001\u20134010 (2020)","journal-title":"IEEE Trans. Med. Imaging"},{"key":"42_CR14","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"250","DOI":"10.1007\/978-3-030-00928-1_29","volume-title":"Medical Image Computing and Computer Assisted Intervention \u2013 MICCAI 2018","author":"I Oksuz","year":"2018","unstructured":"Oksuz, I., et al.: Deep learning using K-space based data augmentation for automated cardiac MR motion artefact detection. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-L\u00f3pez, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11070, pp. 250\u2013258. Springer, Cham (2018). https:\/\/doi.org\/10.1007\/978-3-030-00928-1_29"},{"key":"42_CR15","doi-asserted-by":"publisher","first-page":"136","DOI":"10.1016\/j.media.2019.04.009","volume":"55","author":"I Oksuz","year":"2019","unstructured":"Oksuz, I., et al.: Automatic CNN-based detection of cardiac MR motion artefacts using k-space data augmentation and curriculum learning. Med. Image Anal. 55, 136\u2013147 (2019)","journal-title":"Med. Image Anal."},{"key":"42_CR16","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"199","DOI":"10.1007\/978-3-030-93722-5_22","volume-title":"Statistical Atlases and Computational Models of the Heart. Multi-Disease, Multi-View, and Multi-Center Right Ventricular Segmentation in Cardiac MRI Challenge","author":"C \u00d6zer","year":"2022","unstructured":"\u00d6zer, C., \u00d6ks\u00fcz, \u0130: Cross-domain artefact correction of\u00a0cardiac MRI. In: Puyol Ant\u00f3n, E., et al. (eds.) STACOM 2021. LNCS, vol. 13131, pp. 199\u2013207. Springer, Cham (2022). https:\/\/doi.org\/10.1007\/978-3-030-93722-5_22"},{"key":"42_CR17","doi-asserted-by":"crossref","unstructured":"Ranem, A., Gonz\u00e1lez, C., Mukhopadhyay, A.: Continual hippocampus segmentation with transformers. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 3711\u20133720 (2022)","DOI":"10.1109\/CVPRW56347.2022.00415"},{"key":"42_CR18","doi-asserted-by":"crossref","unstructured":"Seppenwoolde, Y., et al.: Precise and real-time measurement of 3D tumor motion in lung due to breathing and heartbeat, measured during radiotherapy. Int. J. Radiat. Oncol.* Biol.* Phys. 53(4), 822\u2013834 (2002)","DOI":"10.1016\/S0360-3016(02)02803-1"},{"key":"42_CR19","unstructured":"Shi, X., Cao, W., Raschka, S.: Deep neural networks for rank-consistent ordinal regression based on conditional probabilities (2021)"},{"key":"42_CR20","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"332","DOI":"10.1007\/978-3-319-66185-8_38","volume-title":"Medical Image Computing and Computer-Assisted Intervention \u2013 MICCAI 2017","author":"M Sinclair","year":"2017","unstructured":"Sinclair, M., Bai, W., Puyol-Ant\u00f3n, E., Oktay, O., Rueckert, D., King, A.P.: Fully automated segmentation-based respiratory motion correction of multiplanar cardiac magnetic resonance images for large-scale datasets. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10434, pp. 332\u2013340. Springer, Cham (2017). https:\/\/doi.org\/10.1007\/978-3-319-66185-8_38"},{"key":"42_CR21","unstructured":"Tan, M., Le, Q.V.: Efficientnet: rethinking model scaling for convolutional neural networks. In: Chaudhuri, K., Salakhutdinov, R. (eds.) Proceedings of the 36th International Conference on Machine Learning, ICML 2019, 9\u201315 June 2019, Long Beach, California, USA. Proceedings of Machine Learning Research, vol. 97, pp. 6105\u20136114. PMLR (2019). https:\/\/proceedings.mlr.press\/v97\/tan19a.html"},{"key":"42_CR22","doi-asserted-by":"crossref","unstructured":"Zhang, Q., Hu, Y.C., Liu, F., Goodman, K., Rosenzweig, K.E., Mageras, G.S.: Correction of motion artifacts in cone-beam CT using a patient-specific respiratory motion model. Med. Phys. 37(6Part1), 2901\u20132909 (2010)","DOI":"10.1118\/1.3397460"}],"container-title":["Lecture Notes in Computer Science","Statistical Atlases and Computational Models of the Heart. Regular and CMRxMotion Challenge Papers"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-23443-9_42","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,1,26]],"date-time":"2023-01-26T23:35:21Z","timestamp":1674776121000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-23443-9_42"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022]]},"ISBN":["9783031234422","9783031234439"],"references-count":22,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-23443-9_42","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2022]]},"assertion":[{"value":"28 January 2023","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"STACOM","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Workshop on Statistical Atlases and Computational Models of the Heart","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Singapore","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Singapore","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2022","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"18 September 2022","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"18 September 2022","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"13","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"stacom2022","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/stacom.github.io\/stacom2022\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Double-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"EquinOCS","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"48","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"48","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"100% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"2","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"4","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}