{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,12]],"date-time":"2024-09-12T22:25:11Z","timestamp":1726179911535},"publisher-location":"Cham","reference-count":35,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783031214219"},{"type":"electronic","value":"9783031214226"}],"license":[{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2022]]},"DOI":"10.1007\/978-3-031-21422-6_25","type":"book-chapter","created":{"date-parts":[[2022,11,12]],"date-time":"2022-11-12T14:03:31Z","timestamp":1668261811000},"page":"330-340","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":2,"title":["From Ontology to\u00a0Knowledge Graph Trend: Ontology as\u00a0Foundation Layer for\u00a0Knowledge Graph"],"prefix":"10.1007","author":[{"given":"Fatima N.","family":"AL-Aswadi","sequence":"first","affiliation":[]},{"given":"Huah Yong","family":"Chan","sequence":"additional","affiliation":[]},{"given":"Keng Hoon","family":"Gan","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2022,11,13]]},"reference":[{"key":"25_CR1","doi-asserted-by":"publisher","unstructured":"Ahmed, I.A., et al.: Arabic knowledge graph construction: a close look in the present and into the future. J. King Saud Univ. Comput. Inf. Sci. (2022). iSSN: 1319\u20131578. https:\/\/doi.org\/10.1016\/j.jksuci.2022.04.007","DOI":"10.1016\/j.jksuci.2022.04.007"},{"key":"25_CR2","doi-asserted-by":"publisher","unstructured":"Albukhitan, S., Helmy, T., Alnazer, A.: Arabic ontology learning using deep learning. In: Proceedings of the International Conference on Web Intelligence, 3109052, pp. 1138\u20131142. ACM (2007). https:\/\/doi.org\/10.1145\/3106426.3109052","DOI":"10.1145\/3106426.3109052"},{"key":"25_CR3","doi-asserted-by":"crossref","unstructured":"Arefyev, N., et al.: Neural GRANNy at SemEval-2019 task 2: a combined approach for better modeling of semantic relationships in semantic frame induction. In: Proceedings of the 13th International Workshop on Semantic Evaluation, pp. 31\u201338 (2019)","DOI":"10.18653\/v1\/S19-2004"},{"key":"25_CR4","doi-asserted-by":"publisher","unstructured":"Astrakhantsev, N A., Yu Turdakov, D.: Automatic construction and enrichment of informal ontologies: a survey. Program. Comput. Softw. 39(1), 34\u201342 (2013). issn: 1608\u20133261. https:\/\/doi.org\/10.1134\/S0361768813010039","DOI":"10.1134\/S0361768813010039"},{"issue":"6","key":"25_CR5","doi-asserted-by":"publisher","first-page":"3901","DOI":"10.1007\/s10462-019-09782-9","volume":"53","author":"FN Al-Aswadi","year":"2019","unstructured":"Al-Aswadi, F.N., Chan, H.Y., Gan, K.H.: Automatic ontology construction from text: a review from shallow to deep learning trend. Artif. Intell. Rev. 53(6), 3901\u20133928 (2019). https:\/\/doi.org\/10.1007\/s10462-019-09782-9","journal-title":"Artif. Intell. Rev."},{"key":"25_CR6","series-title":"Lecture Notes on Data Engineering and Communications Technologies","doi-asserted-by":"publisher","first-page":"374","DOI":"10.1007\/978-3-030-70713-2_35","volume-title":"Innovative Systems for Intelligent Health Informatics","author":"FN AL-Aswadi","year":"2021","unstructured":"AL-Aswadi, F.N., Chan, H.Y., Gan, K.H.: Extracting semantic concepts and relations from scientific publications by using deep learning. In: Saeed, F., Mohammed, F., Al-Nahari, A. (eds.) IRICT 2020. LNDECT, vol. 72, pp. 374\u2013383. Springer, Cham (2021). https:\/\/doi.org\/10.1007\/978-3-030-70713-2_35"},{"key":"25_CR7","first-page":"3","volume":"123","author":"P Buitelaar","year":"2005","unstructured":"Buitelaar, P., Cimiano, P., Magnini, B.: Ontology learning from text: an overview. Ontology Learn. Methods Eval. Appl. 123, 3\u201312 (2005)","journal-title":"Ontology Learn. Methods Eval. Appl."},{"key":"25_CR8","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"227","DOI":"10.1007\/11428817_21","volume-title":"Natural Language Processing and Information Systems","author":"P Cimiano","year":"2005","unstructured":"Cimiano, P., V\u00f6lker, J.: Text2Onto. In: Montoyo, A., Mu\u0144oz, R., M\u00e9tais, E. (eds.) NLDB 2005. LNCS, vol. 3513, pp. 227\u2013238. Springer, Heidelberg (2005). https:\/\/doi.org\/10.1007\/11428817_21"},{"key":"25_CR9","doi-asserted-by":"crossref","unstructured":"De Donato, R., et al.: QueDI: from knowledge graph querying to data visualization. In: SEMANTiCS, pp. 70\u201386 (2020)","DOI":"10.1007\/978-3-030-59833-4_5"},{"key":"25_CR10","doi-asserted-by":"crossref","unstructured":"Du, Y., et al.: Knowledge extract and ontology construction method of assembly process text. In: MATEC Web of Conferences, vol. 355. EDP Sciences (2022). ISBN: 2274-7214","DOI":"10.1051\/matecconf\/202235502029"},{"key":"25_CR11","unstructured":"Ehrlinger, L., W\u00f6\u00df, W.: Towards a definition of knowledge graphs. SEMANTiCS (Posters, Demos, SuCCESS) 48(1-4), 2 (2016)"},{"key":"25_CR12","doi-asserted-by":"crossref","unstructured":"F\u00e4rber, M., et al.: Linked data quality of DBpedia, Freebase, OpenCyc, Wikidata, and YAGO. Seman. Web 9(1), 77\u2013129 (2018). issn: 1570\u20130844","DOI":"10.3233\/SW-170275"},{"key":"25_CR13","doi-asserted-by":"crossref","unstructured":"Ferr\u00e9, S.,. Sparklis: an expressive query builder for SPARQL endpoints with guidance in natural language. Seman. Web 8(3), 405\u2013418 (2017). issn: 1570\u20130844","DOI":"10.3233\/SW-150208"},{"key":"25_CR14","doi-asserted-by":"crossref","unstructured":"Gruber, T.R.: A translation approach to portable ontology specifications. Knowl. Acquisition 5(2), 199\u2013220 (1993). issn: 1042\u20138143","DOI":"10.1006\/knac.1993.1008"},{"key":"25_CR15","series-title":"International Handbooks on Information Systems","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1007\/978-3-540-92673-3_0","volume-title":"Handbook on Ontologies","author":"N Guarino","year":"2009","unstructured":"Guarino, N., Oberle, D., Staab, S.: What is an ontology? In: Staab, S., Studer, R. (eds.) Handbook on Ontologies. IHIS, pp. 1\u201317. Springer, Heidelberg (2009). https:\/\/doi.org\/10.1007\/978-3-540-92673-3_0"},{"key":"25_CR16","doi-asserted-by":"publisher","unstructured":"Hitzler, P.: A review of the semantic web field. Commun. ACM 64(2), 76\u201383 (2021). ISSN: 0001\u20130782. https:\/\/doi.org\/10.1145\/3397512","DOI":"10.1145\/3397512"},{"key":"25_CR17","doi-asserted-by":"publisher","unstructured":"Ji, S., et al.: A survey on knowledge graphs: representation, acquisition and applications. IEEE Trans. Neural Netw. Learn. Syst. 33(2) 494\u2013514 (2022). https:\/\/doi.org\/10.1109\/TNNLS.2021.3070843","DOI":"10.1109\/TNNLS.2021.3070843"},{"key":"25_CR18","doi-asserted-by":"crossref","unstructured":"Jiang, X., Tan, A.H.: CRCTOL: a semantic-based domain ontology learning system. J. Am. Soc. Inf. Sci. Technol. 61(1), 150\u2013168 (2010). ISSN: 1532\u20132890","DOI":"10.1002\/asi.21231"},{"key":"25_CR19","unstructured":"Kasenchak, B., Lehnert, A.E.: ontology for knowledge graphs. Online Webinar (2021). https:\/\/www.youtube.com\/watch?v=7qIBex7a0kE"},{"key":"25_CR20","doi-asserted-by":"crossref","unstructured":"Kondylakis, H., et al. Delta: a modular ontology evaluation system. Information 12(8), 301 (2021). ISSN: 2078\u20132489","DOI":"10.3390\/info12080301"},{"key":"25_CR21","doi-asserted-by":"crossref","unstructured":"Lan, N., et al.: Research on knowledge graphs with concept lattice constraints. Symmetry 13(12), 2363 (2021). ISSN: 2073\u20138994","DOI":"10.3390\/sym13122363"},{"key":"25_CR22","doi-asserted-by":"crossref","unstructured":"Lehmann, J., et al.: DBpedia-a large-scale, multilingual knowledge base extracted from Wikipedia. Seman. Web 6(2), 167\u2013195 (2015). ISSN 1570\u20130844","DOI":"10.3233\/SW-140134"},{"key":"25_CR23","doi-asserted-by":"publisher","first-page":"117","DOI":"10.1007\/978-981-10-5209-5_5","volume-title":"Deep Learning in Natural Language Processing","author":"Z Liu","year":"2018","unstructured":"Liu, Z., Han, X.: Deep learning in knowledge graph. In: Deng, L., Liu, Y. (eds.) Deep Learning in Natural Language Processing, pp. 117\u2013145. Springer, Singapore (2018). https:\/\/doi.org\/10.1007\/978-981-10-5209-5_5"},{"key":"25_CR24","doi-asserted-by":"publisher","unstructured":"Browarnik, A., Maimon, O.: Ontology learning from text: why the ontology learning layer cake is not viable. Int. J. Signs Semiot. Syst. 4(2) 1\u201314 (2015). ISSN: 2155\u20135028. https:\/\/doi.org\/10.4018\/ijsss.2015070101","DOI":"10.4018\/ijsss.2015070101"},{"key":"25_CR25","doi-asserted-by":"publisher","unstructured":"Nickel, M., et al.: A review of relational machine learning for knowledge graphs. Proc. IEEE 104(1), 11\u201333 (2016). ISSN: 1558\u20132256. https:\/\/doi.org\/10.1109\/JPROC.2015.2483592","DOI":"10.1109\/JPROC.2015.2483592"},{"key":"25_CR26","doi-asserted-by":"publisher","unstructured":"S\u00f6ren, A., et al.: Towards a knowledge graph for science. In: Proceedings of the 8th International Conference on Web Intelligence, Mining and Semantics. Association for Computing Machinery, p. 3227689. https:\/\/doi.org\/10.1145\/3227609","DOI":"10.1145\/3227609"},{"key":"25_CR27","first-page":"60","volume":"11","author":"R Subhashini","year":"2011","unstructured":"Subhashini, R., Akilandeswari, J.: A survey on ontology construction methodologies. Int. J. Enterp. Comput. Bus. Syst. 11, 60\u201372 (2011)","journal-title":"Int. J. Enterp. Comput. Bus. Syst."},{"key":"25_CR28","doi-asserted-by":"publisher","unstructured":"Suchanek, F.M., Kasneci, G., Weikum, G.: Yago: a core of semantic knowledge. In: Proceedings of the 16th international conference on World Wide Web, 1242667, pp. 697\u2013706. ACM (2007). https:\/\/doi.org\/10.1145\/1242572.1242667","DOI":"10.1145\/1242572.1242667"},{"issue":"13","key":"25_CR29","doi-asserted-by":"publisher","first-page":"8337","DOI":"10.1007\/s00500-021-05756-8","volume":"25","author":"S Tiwari","year":"2021","unstructured":"Tiwari, S., Al-Aswadi, F.N., Gaurav, D.: Recent trends in knowledge graphs: theory and practice. Soft Comput. 25(13), 8337\u20138355 (2021). https:\/\/doi.org\/10.1007\/s00500-021-05756-8","journal-title":"Soft Comput."},{"key":"25_CR30","series-title":"Lecture Notes in Networks and Systems","doi-asserted-by":"publisher","first-page":"11","DOI":"10.1007\/978-981-15-9774-9_2","volume-title":"Emerging Technologies in Data Mining and Information Security","author":"S Tiwari","year":"2021","unstructured":"Tiwari, S., Gaurav, D., Srivastava, A., Rai, C., Abhishek, K.: A preliminary study of knowledge graphs and their construction. In: Tavares, J.M.R.S., Chakrabarti, S., Bhattacharya, A., Ghatak, S. (eds.) Emerging Technologies in Data Mining and Information Security. LNNS, vol. 164, pp. 11\u201320. Springer, Singapore (2021). https:\/\/doi.org\/10.1007\/978-981-15-9774-9_2"},{"key":"25_CR31","series-title":"Lecture Notes in Computer Science (Lecture Notes in Artificial Intelligence)","doi-asserted-by":"publisher","first-page":"105","DOI":"10.1007\/978-3-540-85569-9_7","volume-title":"Computable Models of the Law","author":"J V\u00f6lker","year":"2008","unstructured":"V\u00f6lker, J., Fernandez Langa, S., Sure, Y.: Supporting the construction of Spanish legal ontologies with Text2Onto. In: Casanovas, P., Sartor, G., Casellas, N., Rubino, R. (eds.) Computable Models of the Law. LNCS (LNAI), vol. 4884, pp. 105\u2013112. Springer, Heidelberg (2008). https:\/\/doi.org\/10.1007\/978-3-540-85569-9_7"},{"key":"25_CR32","doi-asserted-by":"crossref","unstructured":"Wong, W., Liu, W., Bennamoun, M.: Ontology learning from text: a look back and into the future. ACM Comput. Surv. (CSUR) 44(4), 20 (2012). ISSN: 0360\u20130300","DOI":"10.1145\/2333112.2333115"},{"key":"25_CR33","unstructured":"Alavijeh, Z.Z.: The application of link mining in social network analysis. In: 2015. p. 6 (2015), ISSN: 2322\u20135157"},{"key":"25_CR34","doi-asserted-by":"publisher","unstructured":"Zou, X.: A survey on application of knowledge graph. J. Phys. Conf. Ser. 1487, 012016 (2020). ISSN: 1742\u20136588 1742\u20136596. https:\/\/doi.org\/10.1088\/1742-6596\/1487\/1\/012016","DOI":"10.1088\/1742-6596\/1487\/1\/012016"},{"key":"25_CR35","doi-asserted-by":"crossref","unstructured":"Zouaq, A.: An overview of shallow and deep natural language processing for ontology learning. In: Wong, W., Liu, W., Bennamoun, M. (eds.) Ontology Learning and Knowledge Discovery using the Web: Challenges and Recent Advances, vol. 2. USA, Information Science Reference (IGI Global), Chap. 2, pp. 16\u201337 (2011)","DOI":"10.4018\/978-1-60960-625-1.ch002"}],"container-title":["Communications in Computer and Information Science","Knowledge Graphs and Semantic Web"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-21422-6_25","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,11,14]],"date-time":"2022-11-14T00:17:57Z","timestamp":1668385077000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-21422-6_25"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022]]},"ISBN":["9783031214219","9783031214226"],"references-count":35,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-21422-6_25","relation":{},"ISSN":["1865-0929","1865-0937"],"issn-type":[{"type":"print","value":"1865-0929"},{"type":"electronic","value":"1865-0937"}],"subject":[],"published":{"date-parts":[[2022]]},"assertion":[{"value":"13 November 2022","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"KGSWC","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Iberoamerican Knowledge Graphs and Semantic Web Conference","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Madrid","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Spain","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2022","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"21 November 2022","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"23 November 2022","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"4","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"kgswc2022","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/www.kgswc.org","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Double-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Easychair","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"63","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"22","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"35% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"No","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}