iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://api.crossref.org/works/10.1007/978-3-031-21422-6_2
{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,12]],"date-time":"2024-09-12T22:24:59Z","timestamp":1726179899992},"publisher-location":"Cham","reference-count":114,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783031214219"},{"type":"electronic","value":"9783031214226"}],"license":[{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2022]]},"DOI":"10.1007\/978-3-031-21422-6_2","type":"book-chapter","created":{"date-parts":[[2022,11,12]],"date-time":"2022-11-12T09:03:31Z","timestamp":1668243811000},"page":"16-31","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":9,"title":["A Survey on\u00a0Knowledge Graph-Based Methods for\u00a0Automated Driving"],"prefix":"10.1007","author":[{"given":"Juergen","family":"Luettin","sequence":"first","affiliation":[]},{"given":"Sebastian","family":"Monka","sequence":"additional","affiliation":[]},{"given":"Cory","family":"Henson","sequence":"additional","affiliation":[]},{"given":"Lavdim","family":"Halilaj","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2022,11,13]]},"reference":[{"issue":"10","key":"2_CR1","first-page":"3782","volume":"20","author":"E Arnold","year":"2019","unstructured":"Arnold, E., Al-Jarrah, O.Y., et al.: A survey on 3d object detection methods for autonomous driving applications. T-ITS 20(10), 3782\u20133795 (2019)","journal-title":"T-ITS"},{"key":"2_CR2","unstructured":"ASAM: ASAM OpenSCENARIO V2.0 (2022)"},{"key":"2_CR3","unstructured":"ASAM: ASAM OpenX, proposal (2022)"},{"key":"2_CR4","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"722","DOI":"10.1007\/978-3-540-76298-0_52","volume-title":"The Semantic Web","author":"S Auer","year":"2007","unstructured":"Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.: DBpedia: a nucleus for a web of open data. In: Aberer, K., et al. (eds.) ASWC\/ISWC -2007. LNCS, vol. 4825, pp. 722\u2013735. Springer, Heidelberg (2007). https:\/\/doi.org\/10.1007\/978-3-540-76298-0_52"},{"key":"2_CR5","doi-asserted-by":"publisher","DOI":"10.1016\/j.eswa.2020.113816","volume":"165","author":"C Badue","year":"2021","unstructured":"Badue, C., Guidolini, R., Carneiro, R.V., et al.: Self-driving cars: a survey. Expert Syst. Appl. 165, 113816 (2021)","journal-title":"Expert Syst. Appl."},{"key":"2_CR6","doi-asserted-by":"crossref","unstructured":"Bagschik, G., Menzel, T., Maurer, M.: Ontology based scene creation for the development of automated vehicles. In: 2018 IEEE Intelligent Vehicles Symposium (IV), pp. 1813-1820. IEEE (2018)","DOI":"10.1109\/IVS.2018.8500632"},{"key":"2_CR7","doi-asserted-by":"publisher","first-page":"1173","DOI":"10.1016\/j.asoc.2017.06.020","volume":"61","author":"JB Bordes","year":"2017","unstructured":"Bordes, J.B., Davoine, F., Xu, P., Denoeux, T.: Evidential grammars: a compositional approach for scene understanding. application to multimodal street data. Appl. Soft Comput. 61, 1173\u20131185 (2017)","journal-title":"Appl. Soft Comput."},{"key":"2_CR8","doi-asserted-by":"crossref","unstructured":"Buechel, M., Hinz, G., Ruehl, F., et al.: Ontology-based traffic scene modeling, traffic regulations dependent situational awareness and decision-making for automated vehicles. In: IEEE Intelligent Vehicles Symposium, IV (2017)","DOI":"10.1109\/IVS.2017.7995917"},{"key":"2_CR9","doi-asserted-by":"crossref","unstructured":"Burton, S., Gauerhof, L., Heinzemann, C.: Making the case for safety of machine learning in highly automated driving. In: SAFECOMP Workshops (2017)","DOI":"10.1007\/978-3-319-66284-8_1"},{"key":"2_CR10","doi-asserted-by":"crossref","unstructured":"Cai, H., Zheng, V., Chang, K.: A comprehensive survey of graph embedding: problems, techniques, and applications. In: IEEE TKDE (2018)","DOI":"10.1109\/TKDE.2018.2807452"},{"key":"2_CR11","unstructured":"Chami, I., Abu-El-Haija, S., Perozzi, B., R\u00e9, C., Murphy, K.: Machine learning on graphs: a model and comprehensive taxonomy. CoRR abs\/2005.03675 (2020)"},{"key":"2_CR12","unstructured":"Chang, X., Ren, P., Xu, P., Li, Chen, X., Hauptmann, A.: Scene graphs: a survey of generations and applications. arXiv abs\/2104.01111 (2021)"},{"key":"2_CR13","doi-asserted-by":"crossref","unstructured":"Chen, W., Kloul, L.: An ontology-based approach to generate the advanced driver assistance use cases of highway traffic. In: Proceedings of the 10th IC3K (2018)","DOI":"10.5220\/0006931700750083"},{"key":"2_CR14","unstructured":"Chowdhury, S.N., Wickramarachchi, R., Gad-Elrab, M.H., Stepanova, D., Henson, C.: Towards leveraging commonsense knowledge for autonomous driving. In: ISWC (2021)"},{"key":"2_CR15","doi-asserted-by":"crossref","unstructured":"Claussmann, L., Revilloud, M., Glaser, S., Gruyer, D.: A study on al-based approaches for high-level decision making in highway autonomous driving. In: SMC (2017)","DOI":"10.1109\/SMC.2017.8123203"},{"key":"2_CR16","unstructured":"Dianov, I., Ram\u00edrez-Amaro, K., Cheng, G.: Generating compact models for traffic scenarios to estimate driver behavior using semantic reasoning. In: IROS (2015)"},{"key":"2_CR17","unstructured":"Dickmanns, E., Graefe, V.: Dynamic monocular machine vision. Mach. Vis. Appl. (2005)"},{"key":"2_CR18","doi-asserted-by":"crossref","unstructured":"Dierkes, F., Raaijmakers, M., Schmidt, M., Bouzouraa, M.E., Hofmann, U., Maurer, M.: Towards a multi-hypothesis road representation for automated driving. In: IEEE ITSC (2015)","DOI":"10.1109\/ITSC.2015.402"},{"key":"2_CR19","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"40","DOI":"10.1007\/978-3-030-59987-4_4","volume-title":"HCI International 2020 \u2013 Late Breaking Papers: Digital Human Modeling and Ergonomics, Mobility and Intelligent Environments","author":"MF Elahi","year":"2020","unstructured":"Elahi, M.F., Luo, X., Tian, R.: A framework for modeling knowledge graphs via processing natural descriptions of vehicle-pedestrian interactions. In: Stephanidis, C., Duffy, V.G., Streitz, N., Konomi, S., Kr\u00f6mker, H. (eds.) HCII 2020. LNCS, vol. 12429, pp. 40\u201350. Springer, Cham (2020). https:\/\/doi.org\/10.1007\/978-3-030-59987-4_4"},{"key":"2_CR20","doi-asserted-by":"crossref","unstructured":"Fang, F., Yamaguchi, S., Khiat, A.: Ontology-based reasoning approach for long-term behavior prediction of road users. In: IEEE ITSC (2019)","DOI":"10.1109\/ITSC.2019.8917526"},{"key":"2_CR21","doi-asserted-by":"crossref","unstructured":"Feld, M., M\u00fcller, C.A.: The automotive ontology: managing knowledge inside the vehicle and sharing it between cars. In: AutomotiveUI (2011)","DOI":"10.1145\/2381416.2381429"},{"key":"2_CR22","doi-asserted-by":"crossref","unstructured":"Fuchs, S., Rass, S., Lamprecht, B., Kyamakya, K.: A model for ontology-based scene description for context-aware driver assistance systems. In: ICST AMBI-SYS (2008)","DOI":"10.4108\/ICST.AMBISYS2008.2869"},{"key":"2_CR23","unstructured":"de Gelder, E., et al.: Ontology for scenarios for the assessment of automated vehicles. CoRR abs\/2001.11507 (2020)"},{"key":"2_CR24","doi-asserted-by":"crossref","unstructured":"Geyer, S., Baltzer, M., Franz, B., Hakuli, S., Kauer, M., Kienle, M., et al.: Concept and development of a unified ontology for generating test and use-case catalogues for assisted and automated vehicle guidance. In: IET ITS (2014)","DOI":"10.1049\/iet-its.2012.0188"},{"key":"2_CR25","doi-asserted-by":"crossref","unstructured":"Gonz\u00e1lez, D., P\u00e9rez, J., Montero, V.M., Nashashibi, F.: A review of motion planning techniques for automated vehicles. In: T-ITS (2016)","DOI":"10.1109\/TITS.2015.2498841"},{"key":"2_CR26","unstructured":"Gori, M., Monfardini, G., Scarselli, F.: A new model for learning in graph domains. In: IJCNN (2005)"},{"key":"2_CR27","unstructured":"Gouidis, F., Vassiliades, A., Patkos, T., et al.: A review on intelligent object perception methods combining knowledge-based reasoning and machine learning. In: Proceedings of the AAAI-MAKE Symposium (2020)"},{"key":"2_CR28","doi-asserted-by":"publisher","first-page":"78","DOI":"10.1016\/j.knosys.2018.03.022","volume":"151","author":"P Goyal","year":"2018","unstructured":"Goyal, P., Ferrara, E.: Graph embedding techniques, applications, and performance: a survey. Knowl. Based Syst. 151, 78\u201394 (2018)","journal-title":"Knowl. Based Syst."},{"issue":"3","key":"2_CR29","doi-asserted-by":"publisher","first-page":"362","DOI":"10.1002\/rob.21918","volume":"37","author":"SM Grigorescu","year":"2020","unstructured":"Grigorescu, S.M., Trasnea, B., Cocias, T.T., Macesanu, G.: A survey of deep learning techniques for autonomous driving. J. Field Robot. 37(3), 362\u2013386 (2020)","journal-title":"J. Field Robot."},{"key":"2_CR30","doi-asserted-by":"crossref","unstructured":"Gu, J., Zhao, H., Lin, Z., Li, S., Cai, J., Ling, M.: Scene graph generation with external knowledge and image reconstruction. In: CVPR (2019)","DOI":"10.1109\/CVPR.2019.00207"},{"key":"2_CR31","doi-asserted-by":"crossref","unstructured":"Guha, R.V., Brickley, D., Macbeth, S.: Schema.org: evolution of structured data on the web. Commun. ACM (2016)","DOI":"10.1145\/2844544"},{"issue":"4","key":"2_CR32","doi-asserted-by":"publisher","first-page":"471","DOI":"10.3390\/electronics10040471","volume":"10","author":"Z Guo","year":"2021","unstructured":"Guo, Z., Huang, Y., Hu, X., Wei, H., Zhao, B.: A survey on deep learning based approaches for scene understanding in autonomous driving. Electronics 10(4), 471 (2021)","journal-title":"Electronics"},{"key":"2_CR33","unstructured":"Guti\u00e9rrez, G., Iglesias, J.A., Ord\u00f3\u00f1ez, F.J., Ledezma, A., Sanchis, A.: Agent-based framework for advanced driver assistance systems in urban environments. In: FUSION (2014)"},{"key":"2_CR34","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"699","DOI":"10.1007\/978-3-030-77385-4_42","volume-title":"The Semantic Web","author":"L Halilaj","year":"2021","unstructured":"Halilaj, L., Dindorkar, I., L\u00fcttin, J., Rothermel, S.: A knowledge graph-based approach for situation comprehension in driving scenarios. In: Verborgh, R., et al. (eds.) ESWC 2021. LNCS, vol. 12731, pp. 699\u2013716. Springer, Cham (2021). https:\/\/doi.org\/10.1007\/978-3-030-77385-4_42"},{"key":"2_CR35","doi-asserted-by":"crossref","unstructured":"Halilaj, L., Luettin, J., Henson, C., Monka, S.: Knowledge graphs for automated driving. In: IEEE AIKE-Artificial Intelligence and Knowledge Engineering (2022)","DOI":"10.1109\/AIKE55402.2022.00023"},{"key":"2_CR36","doi-asserted-by":"crossref","unstructured":"Halilaj, L., Luettin, J., Rothermel, S., Arumugam, S.K., Dindorkar, I.: Towards a knowledge graph-based approach for context-aware points-of-interest recommendations. In: ACM\/SIGAPP SAC, pp. 1846\u20131854 (2021)","DOI":"10.1145\/3412841.3442056"},{"key":"2_CR37","unstructured":"Henson, C., Schmid, S., Tran, A.T., Karatzoglou, A.: Using a knowledge graph of scenes to enable search of autonomous driving data. In: ISWC (2019)"},{"key":"2_CR38","doi-asserted-by":"crossref","unstructured":"Herrmann, M., Witt, C., Lake, L., Guneshka, S., Heinzemann, C., Bonarens, F., et al.: Using ontologies for dataset engineering in automotive AI applications. In: 2022 Design, Automation & Test in Europe Conference & Exhibition (DATE) (2022)","DOI":"10.23919\/DATE54114.2022.9774675"},{"key":"2_CR39","doi-asserted-by":"crossref","unstructured":"Hina, M.D., Thierry, C., Soukane, A., Ramdane-Cherif, A.: Ontological and machine learning approaches for managing driving context in intelligent transportation. In: IC3K (2017)","DOI":"10.5220\/0006580803020309"},{"issue":"7","key":"2_CR40","doi-asserted-by":"publisher","first-page":"1527","DOI":"10.1162\/neco.2006.18.7.1527","volume":"18","author":"GE Hinton","year":"2006","unstructured":"Hinton, G.E., Osindero, S., Teh, Y.: A fast learning algorithm for deep belief nets. Neural Comput. 18(7), 1527\u20131554 (2006)","journal-title":"Neural Comput."},{"key":"2_CR41","doi-asserted-by":"crossref","unstructured":"Hogan, A., Blomqvist, E., Cochez, M., et al.: Knowledge graphs. In: ACM Computing Surveys (2021)","DOI":"10.2200\/S01125ED1V01Y202109DSK022"},{"key":"2_CR42","doi-asserted-by":"crossref","unstructured":"Homayounfar, N., Liang, J., Ma, W.C., Fan, J., Wu, X., Urtasun, R.: Dagmapper: learning to map by discovering lane topology. In: ICCV (2019)","DOI":"10.1109\/ICCV.2019.00300"},{"key":"2_CR43","series-title":"Communications in Computer and Information Science","doi-asserted-by":"publisher","first-page":"88","DOI":"10.1007\/978-981-15-3412-6_9","volume-title":"Semantic Technology","author":"J Hovi","year":"2020","unstructured":"Hovi, J., Ichise, R.: Feasibility study: rule generation for ontology-based decision-making systems. In: Wang, X., Lisi, F.A., Xiao, G., Botoeva, E. (eds.) JIST 2019. CCIS, vol. 1157, pp. 88\u201399. Springer, Singapore (2020). https:\/\/doi.org\/10.1007\/978-981-15-3412-6_9"},{"key":"2_CR44","doi-asserted-by":"crossref","unstructured":"Huang, L., Liang, H., Yu, B., Li, B., Zhu, H.: Ontology-based driving scene modeling, situation assessment and decision making for autonomous vehicles. In: (ACIRS) (2019)","DOI":"10.1109\/ACIRS.2019.8935984"},{"key":"2_CR45","doi-asserted-by":"crossref","unstructured":"Huang, Y., Chen, Y.: Survey of state-of-art autonomous driving technologies with deep learning. In: IEEE QRS-C (2020)","DOI":"10.1109\/QRS-C51114.2020.00045"},{"key":"2_CR46","doi-asserted-by":"crossref","unstructured":"H\u00fclsen, M., Z\u00f6llner, J.M., Weiss, C.: Traffic intersection situation description ontology for advanced driver assistance. IEEE IV Symposium (2011)","DOI":"10.1109\/IVS.2011.5940415"},{"key":"2_CR47","doi-asserted-by":"crossref","unstructured":"H\u00fclsen, M., Z\u00f6llner, J.M., Haeberlen, N., Weiss, C.: Asynchronous real-time framework for knowledge-based intersection assistance. In: IEEE ITSC (2011)","DOI":"10.1109\/ITSC.2011.6082810"},{"key":"2_CR48","unstructured":"ISO: ISO 26262\u20131:2018: Road vehicles - functional safety (2018)"},{"issue":"1\u20133","key":"2_CR49","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1561\/0600000079","volume":"12","author":"J Janai","year":"2020","unstructured":"Janai, J., G\u00fcney, F., Behl, A., Geiger, A.: Computer vision for autonomous vehicles: Problems, datasets and state of the art. Found. Trends Comput. Graph. Vis. 12(1\u20133), 1\u2013308 (2020)","journal-title":"Found. Trends Comput. Graph. Vis."},{"key":"2_CR50","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1016\/j.websem.2018.06.003","volume":"56","author":"K Janowicz","year":"2019","unstructured":"Janowicz, K., Haller, A., Cox, S.J.D., Phuoc, D.L., Lefran\u00e7ois, M.: SOSA: a lightweight ontology for sensors, observations, samples, and actuators. J. Web Semant. 56, 1\u201310 (2019)","journal-title":"J. Web Semant."},{"key":"2_CR51","doi-asserted-by":"crossref","unstructured":"Ji, S., Pan, S., Cambria, E., Marttinen, P., Yu, P.S.: A survey on knowledge graphs: representation, acquisition and applications. In: IEEE Transactions on Neural Networks and Learning Systems (2021)","DOI":"10.1109\/TNNLS.2021.3070843"},{"key":"2_CR52","doi-asserted-by":"crossref","unstructured":"Johnson, J., et al.: Image retrieval using scene graphs. In: CVPR (2015)","DOI":"10.1109\/CVPR.2015.7298990"},{"key":"2_CR53","unstructured":"Kaleeswaran, A., Nordmann, A., Mehdi, A.: Towards integrating ontologies into verification for autonomous driving. In: ISWC Satellites (2019)"},{"issue":"3","key":"2_CR54","doi-asserted-by":"publisher","first-page":"15","DOI":"10.5121\/iju.2010.1302","volume":"1","author":"S Kannan","year":"2010","unstructured":"Kannan, S., Thangavelu, A., Kalivaradhan, R.: An intelligent driver assistance system (i-das) for vehicle safety modelling using ontology approach. Int. J. UbiComp 1(3), 15\u201329 (2010)","journal-title":"Int. J. UbiComp"},{"key":"2_CR55","doi-asserted-by":"crossref","unstructured":"Kim, J.E., Henson, C., Huang, K., Tran, T.A., Lin, W.Y.: Accelerating road sign ground truth construction with knowledge graph and machine learning. arXiv abs\/2012.02672 (2020)","DOI":"10.1007\/978-3-030-80126-7_25"},{"key":"2_CR56","unstructured":"Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: ICLR (2017)"},{"key":"2_CR57","doi-asserted-by":"publisher","first-page":"4909","DOI":"10.1109\/TITS.2021.3054625","volume":"23","author":"BR Kiran","year":"2022","unstructured":"Kiran, B.R., et al.: Deep reinforcement learning for autonomous driving: a survey. IEEE Trans. Intell. Transp. Syst. 23, 4909\u20134926 (2022)","journal-title":"IEEE Trans. Intell. Transp. Syst."},{"key":"2_CR58","unstructured":"Klotz, B., Troncy, R., Wilms, D., Bonnet, C.: Vsso: the vehicle signal and attribute ontology. In: SSN@ISWC (2018)"},{"key":"2_CR59","doi-asserted-by":"crossref","unstructured":"Kohlhaas, R., Bittner, T., Schamm, T., Z\u00f6llner, J.M.: Semantic state space for high-level maneuver planning in structured traffic scenes. In: ITSC (2014)","DOI":"10.1109\/ITSC.2014.6957828"},{"key":"2_CR60","doi-asserted-by":"crossref","unstructured":"Kunze, L., Bruls, T., Suleymanov, T., Newman, P.: Reading between the lanes: road layout reconstruction from partially segmented scenes. In: ITSC (2018)","DOI":"10.1109\/ITSC.2018.8569270"},{"key":"2_CR61","doi-asserted-by":"publisher","first-page":"321","DOI":"10.1016\/j.neucom.2019.02.003","volume":"338","author":"F Lateef","year":"2019","unstructured":"Lateef, F., Ruichek, Y.: Survey on semantic segmentation using deep learning techniques. Neurocomputing 338, 321\u2013348 (2019)","journal-title":"Neurocomputing"},{"key":"2_CR62","doi-asserted-by":"crossref","unstructured":"Leroy, J., Gruyer, D., Orfila, O., Faouzi, N.E.E.: Five key components based risk indicators ontology for the modelling and identification of critical interaction between human driven and automated vehicles. In: IFAC (2020)","DOI":"10.1016\/j.ifacol.2021.04.141"},{"key":"2_CR63","doi-asserted-by":"crossref","unstructured":"Li, X., Ying, X., Chuah, M.C.: Grip: graph-based interaction-aware trajectory prediction. In: 2019 IEEE ITSC, pp. 3960\u20133966 (2019)","DOI":"10.1109\/ITSC.2019.8917228"},{"key":"2_CR64","doi-asserted-by":"crossref","unstructured":"Li, Y., Tao, J., Wotawa, F.: Ontology-based test generation for automated and autonomous driving functions. In: IST (2020)","DOI":"10.1016\/j.infsof.2019.106200"},{"key":"2_CR65","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"383","DOI":"10.1007\/978-3-319-58706-6_31","volume-title":"Universal Access in Human\u2013Computer Interaction. Design and Development Approaches and Methods","author":"Y Lilis","year":"2017","unstructured":"Lilis, Y., Zidianakis, E., Partarakis, N., Antona, M., Stephanidis, C.: Personalizing HMI elements in ADAS using ontology meta-models and rule based reasoning. In: Antona, M., Stephanidis, C. (eds.) UAHCI 2017. LNCS, vol. 10277, pp. 383\u2013401. Springer, Cham (2017). https:\/\/doi.org\/10.1007\/978-3-319-58706-6_31"},{"key":"2_CR66","doi-asserted-by":"publisher","first-page":"211","DOI":"10.1023\/B:BTTJ.0000047600.45421.6d","volume":"22","author":"H Liu","year":"2004","unstructured":"Liu, H., Singh, P.: Conceptnet - a practical commonsense reasoning tool-kit. BT Technol. J. 22, 211\u2013226 (2004). https:\/\/doi.org\/10.1023\/B:BTTJ.0000047600.45421.6d","journal-title":"BT Technol. J."},{"issue":"2","key":"2_CR67","doi-asserted-by":"publisher","first-page":"261","DOI":"10.1007\/s11263-019-01247-4","volume":"128","author":"L Liu","year":"2019","unstructured":"Liu, L., et al.: Deep learning for generic object detection: a survey. Int. J. Comput. Vis. 128(2), 261\u2013318 (2019). https:\/\/doi.org\/10.1007\/s11263-019-01247-4","journal-title":"Int. J. Comput. Vis."},{"key":"2_CR68","doi-asserted-by":"crossref","unstructured":"Lu, P., Xu, S., Peng, H.: Graph-embedded lane detection. In: IEEE Transactions on Image Processing (2021)","DOI":"10.1109\/TIP.2021.3057287"},{"key":"2_CR69","doi-asserted-by":"crossref","unstructured":"Minaee, S., Boykov, Y., Porikli, F., Plaza, A., Kehtarnavaz, N., Terzopoulos, D.: Image segmentation using deep learning: a survey. In: IEEE Transactions PAMI (2021)","DOI":"10.1109\/TPAMI.2021.3059968"},{"key":"2_CR70","doi-asserted-by":"crossref","unstructured":"Mohammad, M.A., Kaloskampis, I., Hicks, Y., Setchi, R.: Ontology-based framework for risk assessment in road scenes using videos. In: International Conference KES (2015)","DOI":"10.1016\/j.procs.2015.08.300"},{"key":"2_CR71","doi-asserted-by":"publisher","first-page":"477","DOI":"10.3233\/SW-212959","volume":"13","author":"S Monka","year":"2022","unstructured":"Monka, S., Halilaj, L., Rettinger, A.: A survey on visual transfer learning using knowledge graphs. Semant. Web 13, 477\u2013510 (2022)","journal-title":"Semant. Web"},{"key":"2_CR72","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"357","DOI":"10.1007\/978-3-030-88361-4_21","volume-title":"The Semantic Web \u2013 ISWC 2021","author":"S Monka","year":"2021","unstructured":"Monka, S., Halilaj, L., Schmid, S., Rettinger, A.: Learning visual models using a knowledge graph as a trainer. In: Hotho, A., et al. (eds.) ISWC 2021. LNCS, vol. 12922, pp. 357\u2013373. Springer, Cham (2021). https:\/\/doi.org\/10.1007\/978-3-030-88361-4_21"},{"key":"2_CR73","unstructured":"Morignot, P., Nashashibi, F.: An ontology-based approach to relax traffic regulation for autonomous vehicle assistance. arXiv abs\/1212.0768 (2012)"},{"key":"2_CR74","unstructured":"Mozaffari, S., Al-Jarrah, O.Y., Dianati, M., Jennings, P., Mouzakitis, A.: Deep learning-based vehicle behaviour prediction for autonomous driving applications: a review. arXiv abs\/1912.11676 (2019)"},{"key":"2_CR75","doi-asserted-by":"publisher","first-page":"216","DOI":"10.1016\/j.patcog.2017.08.014","volume":"73","author":"SP Narote","year":"2018","unstructured":"Narote, S.P., Bhujbal, P.N., Narote, A.S., Dhane, D.M.: A review of recent advances in lane detection and departure warning system. Pattern Recognit. 73, 216\u2013234 (2018)","journal-title":"Pattern Recognit."},{"key":"2_CR76","doi-asserted-by":"crossref","unstructured":"Nickel, M., Murphy, K., Tresp, V., Gabrilovich, E.: A review of relational machine learning for knowledge graphs. In: Proceedings of the IEEE (2016)","DOI":"10.1109\/JPROC.2015.2483592"},{"key":"2_CR77","unstructured":"Paardekooper, J.P., Comi, M., et al.: A hybrid-ai approach for competence assessment of automated driving functions. In: SafeAI@AAAI (2021)"},{"key":"2_CR78","doi-asserted-by":"crossref","unstructured":"Paden, B., C\u00e1p, M., Yong, S.Z., Yershov, D.S., Frazzoli, E.: A survey of motion planning and control techniques for self-driving urban vehicles. In: IEEE Transactions on Intelligent Vehicles (2016)","DOI":"10.1109\/TIV.2016.2578706"},{"key":"2_CR79","unstructured":"Pollard, E., Morignot, P., Nashashibi, F.: An ontology-based model to determine the automation level of an automated vehicle for co-driving. In: Proceedings of the FUSION (2013)"},{"key":"2_CR80","doi-asserted-by":"crossref","unstructured":"Qiu, H., Ayara, A., Glimm, B.: A knowledge architecture layer for map data in autonomous vehicles. In: ITSC (2020)","DOI":"10.1109\/ITSC45102.2020.9294712"},{"key":"2_CR81","doi-asserted-by":"crossref","unstructured":"Qiu, H., Ayara, A., Glimm, B.: Ontology-based processing of dynamic maps in automated driving. In: KEOD (2020)","DOI":"10.5220\/0010133900980107"},{"key":"2_CR82","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"73","DOI":"10.1007\/978-3-030-77385-4_5","volume-title":"The Semantic Web","author":"H Qiu","year":"2021","unstructured":"Qiu, H., Ayara, A., Glimm, B.: Ontology-based map data quality assurance. In: Verborgh, R., et al. (eds.) ESWC 2021. LNCS, vol. 12731, pp. 73\u201389. Springer, Cham (2021). https:\/\/doi.org\/10.1007\/978-3-030-77385-4_5"},{"key":"2_CR83","doi-asserted-by":"crossref","unstructured":"Regele, R.: Using ontology-based traffic models for more efficient decision making of autonomous vehicles. In: ICAS (2008)","DOI":"10.1109\/ICAS.2008.10"},{"issue":"1","key":"2_CR84","doi-asserted-by":"publisher","first-page":"153","DOI":"10.14257\/ijca.2018.11.1.14","volume":"1","author":"MW Ryu","year":"2018","unstructured":"Ryu, M.W., Cha, S.H.: Context-awareness based driving assistance system for autonomous vehicles. Int. J. Control Autom. 1(1), 153\u2013162 (2018)","journal-title":"Int. J. Control Autom."},{"key":"2_CR85","doi-asserted-by":"crossref","unstructured":"Sarwar, S., Zia, S., ul Qayyum, Z., Iqbal, M., Safyan, M., Mumtaz, S., et al.: Context aware ontology-based hybrid intelligent framework for vehicle driver categorization. In: Transactions on Emerging Telecommunications Technologies (2019)","DOI":"10.1002\/ett.3729"},{"key":"2_CR86","doi-asserted-by":"crossref","unstructured":"Schafer, F., Kriesten, R., Chrenko, D., Gechter, F.: No need to learn from each other? - potentials of knowledge modeling in autonomous vehicle systems engineering towards new methods in multidisciplinary contexts. In: ICE\/ITMC (2017)","DOI":"10.1109\/ICE.2017.8279921"},{"issue":"3","key":"2_CR87","doi-asserted-by":"publisher","first-page":"243","DOI":"10.1017\/S0269888904000050","volume":"18","author":"C Schlenoff","year":"2003","unstructured":"Schlenoff, C., Balakirsky, S., Uschold, M., Provine, R., Smith, S.: Using ontologies to aid navigation planning in autonomous vehicles. Knowl. Eng. Rev. 18(3), 243\u2013255 (2003)","journal-title":"Knowl. Eng. Rev."},{"key":"2_CR88","doi-asserted-by":"publisher","first-page":"59131","DOI":"10.1109\/ACCESS.2021.3072739","volume":"9","author":"M Scholtes","year":"2021","unstructured":"Scholtes, M., Westhofen, L., Turner, L.R., Lotto, K., Schuldes, M., Weber, H., et al.: 6-layer model for a structured description and categorization of urban traffic and environment. IEEE Access 9, 59131\u201359147 (2021)","journal-title":"IEEE Access"},{"key":"2_CR89","doi-asserted-by":"crossref","unstructured":"Schwarting, W., Pierson, A., et al.: Social behavior for autonomous vehicles. In: Proceedings of the National Academy of Sciences, USA (2019)","DOI":"10.1073\/pnas.1820676116"},{"key":"2_CR90","unstructured":"Singhal, A.: Introducing the knowledge graph: things, not strings. https:\/\/blog.google\/products\/search\/introducing-knowledge-graph-things-not\/ (2012). 07 May 2021"},{"key":"2_CR91","doi-asserted-by":"crossref","unstructured":"Spehr, J., Rosebrock, D., Mossau, D., Auer, R., Brosig, S., Wahl, F.: Hierarchical scene understanding for intelligent vehicles. In: 2011 IEEE Intelligent Vehicles Symposium (IV) (2011)","DOI":"10.1109\/IVS.2011.5940566"},{"issue":"1\u20132","key":"2_CR92","doi-asserted-by":"publisher","first-page":"161","DOI":"10.1016\/S0169-023X(97)00056-6","volume":"25","author":"R Studer","year":"1998","unstructured":"Studer, R., Benjamins, V.R., Fensel, D.: Knowledge engineering: Principles and methods. Data Knowl. Eng. 25(1\u20132), 161\u2013197 (1998)","journal-title":"Data Knowl. Eng."},{"key":"2_CR93","doi-asserted-by":"crossref","unstructured":"Suryawanshi, Y., Qiu, H., Ayara, A., Glimm, B.: An ontological model for map data in automotive systems. In: IEEE AIKE (2019)","DOI":"10.1109\/AIKE.2019.00034"},{"key":"2_CR94","doi-asserted-by":"publisher","first-page":"107623","DOI":"10.1016\/j.patcog.2020.107623","volume":"11","author":"J Tang","year":"2021","unstructured":"Tang, J., Li, S., Liu, P.: A review of lane detection methods based on deep learning. Pattern Recognit. 11, 107623 (2021)","journal-title":"Pattern Recognit."},{"key":"2_CR95","doi-asserted-by":"crossref","unstructured":"T\u00f6pfer, D., Spehr, J., Effertz, J., Stiller, C.: Efficient road scene understanding for intelligent vehicles using compositional hierarchical models. In: T-ITS (2015)","DOI":"10.1109\/TITS.2014.2354243"},{"key":"2_CR96","doi-asserted-by":"crossref","unstructured":"Ulbrich, S., Menzel, T., Reschka, A., Schuldt, F., Maurer, M.: Defining and substantiating the terms scene, situation, and scenario for automated driving. In: ITSC (2015)","DOI":"10.1109\/ITSC.2015.164"},{"key":"2_CR97","doi-asserted-by":"crossref","unstructured":"Ulbrich, S., Nothdurft, T., Maurer, M., Hecker, P.: Graph-based context representation, environment modeling and information aggregation for automated driving. In: IEEE Intelligent Vehicles Symposium Proceedings (2014)","DOI":"10.1109\/IVS.2014.6856556"},{"issue":"17","key":"2_CR98","doi-asserted-by":"publisher","first-page":"7782","DOI":"10.3390\/app11177782","volume":"11","author":"IR Urbieta","year":"2021","unstructured":"Urbieta, I.R., Nieto, M., Garc\u00eda, M., Otaegui, O.: Design and implementation of an ontology for semantic labeling and testing: automotive global ontology (AGO). Appli. Sci. 11(17), 7782 (2021)","journal-title":"Appli. Sci."},{"key":"2_CR99","unstructured":"Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Li\u00f2, P., Bengio, Y.: Graph attention networks. In: 6th International Conference on Learning Representations, ICLR (2018)"},{"key":"2_CR100","doi-asserted-by":"crossref","unstructured":"Venkateshkumar, S., Sridhar, M., Ott, P.: Latent hierarchical part based models for road scene understanding. In: ICCVW (2015)","DOI":"10.1109\/ICCVW.2015.25"},{"key":"2_CR101","doi-asserted-by":"crossref","unstructured":"Wang, Q., Mao, Z., Wang, B., Guo, L.: Knowledge graph embedding: a survey of approaches and applications. In: IEEE Transactions on Knowledge and Data Engineering (2017)","DOI":"10.1109\/TKDE.2017.2754499"},{"key":"2_CR102","doi-asserted-by":"crossref","unstructured":"Werner, S., Rettinger, A., Halilaj, L., Luettin, J.: Embedding Taxonomical, Situational or Sequential Knowledge Graph Context for Recommendation Tasks. In: Further with Knowledge Graphs (2021)","DOI":"10.3233\/SSW210046"},{"key":"2_CR103","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"425","DOI":"10.1007\/978-3-030-77385-4_25","volume-title":"The Semantic Web","author":"S Werner","year":"2021","unstructured":"Werner, S., Rettinger, A., Halilaj, L., L\u00fcttin, J.: RETRA: recurrent transformers for learning temporally contextualized knowledge graph embeddings. In: Verborgh, R., et al. (eds.) ESWC 2021. LNCS, vol. 12731, pp. 425\u2013440. Springer, Cham (2021). https:\/\/doi.org\/10.1007\/978-3-030-77385-4_25"},{"key":"2_CR104","doi-asserted-by":"publisher","first-page":"519","DOI":"10.1109\/OJITS.2022.3187247","volume":"3","author":"L Westhofen","year":"2022","unstructured":"Westhofen, L., Neurohr, C., Butz, M., Scholtes, M., Schuldes, M.: Using ontologies for the formalization and recognition of criticality for automated driving. IEEE Open J. Intell. Transp. Syst. 3, 519\u2013538 (2022)","journal-title":"IEEE Open J. Intell. Transp. Syst."},{"key":"2_CR105","unstructured":"Wickramarachchi, R., Henson, C., Sheth, A.: An evaluation of knowledge graph embeddings for autonomous driving data: experience and practice. In: AAAI-MAKE (2020)"},{"key":"2_CR106","doi-asserted-by":"crossref","unstructured":"Wickramarachchi, R., Henson, C., Sheth, A.: Knowledge-infused learning for entity prediction in driving scenes. Frontiers in Big Data (2021)","DOI":"10.3389\/fdata.2021.759110"},{"key":"2_CR107","unstructured":"Woo, S., Kim, D., Cho, D., Kweon, I.S.: Linknet: relational embedding for scene graph. In: NeurIPS (2018)"},{"key":"2_CR108","doi-asserted-by":"crossref","unstructured":"Xiong, Z., Dixit, V., Waller, S.: The development of an ontology for driving context modelling and reasoning. In: ITSC (2016)","DOI":"10.1109\/ITSC.2016.7795524"},{"key":"2_CR109","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"606","DOI":"10.1007\/978-3-030-58592-1_36","volume-title":"Computer Vision \u2013 ECCV 2020","author":"A Zareian","year":"2020","unstructured":"Zareian, A., Karaman, S., Chang, S.-F.: Bridging knowledge graphs to generate scene graphs. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12368, pp. 606\u2013623. Springer, Cham (2020). https:\/\/doi.org\/10.1007\/978-3-030-58592-1_36"},{"key":"2_CR110","doi-asserted-by":"crossref","unstructured":"Zhao, L., Ichise, R., et al., T.Y.: Ontology-based decision making on uncontrolled intersections and narrow roads. In: 2015 IEEE Intelligent Vehicles Symposium (IV) (2015)","DOI":"10.1109\/IVS.2015.7225667"},{"key":"2_CR111","doi-asserted-by":"crossref","unstructured":"Zhao, L., Ichise, R., Liu, Z., Mita, S., Sasaki, Y.: Ontology-based driving decision making: a feasibility study at uncontrolled intersections. In: IEICE (2017)","DOI":"10.1587\/transinf.2016EDP7337"},{"key":"2_CR112","unstructured":"Zhao, L., Ichise, R., Mita, S., Sasaki, Y.: Core ontologies for safe autonomous driving. In: ISWC (2015)"},{"key":"2_CR113","doi-asserted-by":"crossref","unstructured":"Zhu, H., Yuen, K., Mihaylova, L., Leung, H.: Overview of environment perception for intelligent vehicles. In: T-ITS (2017)","DOI":"10.1109\/TITS.2017.2658662"},{"key":"2_CR114","doi-asserted-by":"crossref","unstructured":"Zipfl, M., et al.: Relation-based motion prediction using traffic scene graphs. In: IEEE ITSC (2022)","DOI":"10.1109\/ITSC55140.2022.9922155"}],"container-title":["Communications in Computer and Information Science","Knowledge Graphs and Semantic Web"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-21422-6_2","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,11,13]],"date-time":"2022-11-13T19:14:33Z","timestamp":1668366873000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-21422-6_2"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022]]},"ISBN":["9783031214219","9783031214226"],"references-count":114,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-21422-6_2","relation":{},"ISSN":["1865-0929","1865-0937"],"issn-type":[{"type":"print","value":"1865-0929"},{"type":"electronic","value":"1865-0937"}],"subject":[],"published":{"date-parts":[[2022]]},"assertion":[{"value":"13 November 2022","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"KGSWC","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Iberoamerican Knowledge Graphs and Semantic Web Conference","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Madrid","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Spain","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2022","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"21 November 2022","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"23 November 2022","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"4","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"kgswc2022","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/www.kgswc.org","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Double-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Easychair","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"63","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"22","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"35% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"No","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}