{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,12]],"date-time":"2024-09-12T21:37:41Z","timestamp":1726177061680},"publisher-location":"Cham","reference-count":37,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783031198960"},{"type":"electronic","value":"9783031198977"}],"license":[{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2022]]},"DOI":"10.1007\/978-3-031-19897-7_35","type":"book-chapter","created":{"date-parts":[[2022,10,20]],"date-time":"2022-10-20T17:14:33Z","timestamp":1666286073000},"page":"449-461","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":3,"title":["MorphoActivation: Generalizing ReLU Activation Function by\u00a0Mathematical Morphology"],"prefix":"10.1007","author":[{"given":"Santiago","family":"Velasco-Forero","sequence":"first","affiliation":[]},{"given":"Jes\u00fas","family":"Angulo","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2022,10,20]]},"reference":[{"issue":"6","key":"35_CR1","doi-asserted-by":"publisher","first-page":"1782","DOI":"10.1137\/0151091","volume":"51","author":"GJF Banon","year":"1991","unstructured":"Banon, G.J.F., Barrera, J.: Minimal representations for translation-invariant set mappings by mathematical morphology. SIAM J. Appl. Math. 51(6), 1782\u20131798 (1991)","journal-title":"SIAM J. Appl. Math."},{"issue":"3","key":"35_CR2","doi-asserted-by":"publisher","first-page":"385","DOI":"10.1016\/0362-546X(95)91645-6","volume":"24","author":"SG Bartels","year":"1995","unstructured":"Bartels, S.G., Kuntz, L., Scholtes, S.: Continuous selections of linear functions and nonsmooth critical point theory. Nonlinear Anal. Theory Methods Appl. 24(3), 385\u2013407 (1995)","journal-title":"Nonlinear Anal. Theory Methods Appl."},{"key":"35_CR3","unstructured":"Boureau, Y.L., Ponce, J., LeCun, Y.: A theoretical analysis of feature pooling in visual recognition. In: ICML, pp. 111\u2013118 (2010)"},{"key":"35_CR4","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"3","DOI":"10.1007\/978-3-319-57240-6_1","volume-title":"Mathematical Morphology and Its Applications to Signal and Image Processing","author":"V Charisopoulos","year":"2017","unstructured":"Charisopoulos, V., Maragos, P.: Morphological perceptrons: geometry and training algorithms. In: Angulo, J., Velasco-Forero, S., Meyer, F. (eds.) ISMM 2017. LNCS, vol. 10225, pp. 3\u201315. Springer, Cham (2017). https:\/\/doi.org\/10.1007\/978-3-319-57240-6_1"},{"key":"35_CR5","doi-asserted-by":"publisher","DOI":"10.1016\/j.patcog.2020.107246","volume":"102","author":"G Franchi","year":"2020","unstructured":"Franchi, G., Fehri, A., Yao, A.: Deep morphological networks. Pattern Recogn. 102, 107246 (2020)","journal-title":"Pattern Recogn."},{"key":"35_CR6","unstructured":"Frankle, J., Schwab, D.J., Morcos, A.S.: Training batchnorm and only batchnorm: On the expressive power of random features in CNNs. In: ICLR (2021)"},{"key":"35_CR7","unstructured":"Goodfellow, I., Bengio, Y., Courville, A.: Deep learning. MIT press (2016)"},{"key":"35_CR8","unstructured":"Goodfellow, I., Warde-Farley, D., Mirza, M., Courville, A., Bengio, Y.: Maxout networks. In: ICML, pp. 1319\u20131327 (2013)"},{"issue":"3","key":"35_CR9","doi-asserted-by":"publisher","first-page":"209","DOI":"10.1080\/02331939408844018","volume":"31","author":"VV Gorokhovik","year":"1994","unstructured":"Gorokhovik, V.V., Zorko, O.I., Birkhoff, G.: Piecewise affine functions and polyhedral sets. Optimization 31(3), 209\u2013221 (1994)","journal-title":"Optimization"},{"issue":"3","key":"35_CR10","doi-asserted-by":"publisher","first-page":"357","DOI":"10.1085\/jgp.40.3.357","volume":"40","author":"HK Hartline","year":"1957","unstructured":"Hartline, H.K., Ratliff, F.: Inhibitory interaction of receptor units in the eye of limulus. J. Gen. Physiol. 40(3), 357\u2013376 (1957)","journal-title":"J. Gen. Physiol."},{"key":"35_CR11","doi-asserted-by":"crossref","unstructured":"He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-level performance on imagenet classification. In: IEEE ICCV, pp. 1026\u20131034 (2015)","DOI":"10.1109\/ICCV.2015.123"},{"issue":"06","key":"35_CR12","doi-asserted-by":"publisher","first-page":"568","DOI":"10.1109\/34.87343","volume":"13","author":"HJAM Heijmans","year":"1991","unstructured":"Heijmans, H.J.A.M.: Theoretical aspects of gray-level morphology. IEEE Trans. Pattern Anal. Mach. Intell. 13(06), 568\u2013582 (1991)","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"35_CR13","doi-asserted-by":"publisher","first-page":"736","DOI":"10.1007\/s10851-022-01091-1","volume":"64","author":"R Hermary","year":"2022","unstructured":"Hermary, R., Tochon, G., Puybareau, \u00c9., Kirszenberg, A., Angulo, J.: Learning grayscale mathematical morphology with smooth morphological layers. J. Math. Imaging Vis. 64, 736\u2013753 (2022). https:\/\/doi.org\/10.1007\/s10851-022-01091-1","journal-title":"J. Math. Imaging Vis."},{"key":"35_CR14","doi-asserted-by":"publisher","first-page":"327","DOI":"10.1016\/j.neucom.2019.08.095","volume":"390","author":"G Hern\u00e1ndez","year":"2020","unstructured":"Hern\u00e1ndez, G., Zamora, E., Sossa, H., T\u00e9llez, G., Furl\u00e1n, F.: Hybrid neural networks for big data classification. Neurocomputing 390, 327\u2013340 (2020)","journal-title":"Neurocomputing"},{"issue":"11","key":"35_CR15","doi-asserted-by":"publisher","first-page":"4826","DOI":"10.1109\/TNNLS.2020.3025723","volume":"32","author":"MA Islam","year":"2020","unstructured":"Islam, M.A., et al.: Extending the morphological hit-or-miss transform to deep neural networks. IEEE Trans. NNs Learn. Syst. 32(11), 4826\u20134838 (2020)","journal-title":"IEEE Trans. NNs Learn. Syst."},{"issue":"1\u20132","key":"35_CR16","first-page":"33","volume":"41","author":"R Keshet","year":"2000","unstructured":"Keshet, R.: Mathematical morphology on complete semilattices and its applications to image processing. Fund. Inform. 41(1\u20132), 33\u201356 (2000)","journal-title":"Fund. Inform."},{"key":"35_CR17","doi-asserted-by":"crossref","unstructured":"Ma, N., Zhang, X., Liu, M., Sun, J.: Activate or not: learning customized activation. In: IEEE CVPR, pp. 8032\u20138042 (2021)","DOI":"10.1109\/CVPR46437.2021.00794"},{"key":"35_CR18","unstructured":"Maas, A.L., Hannun, A.Y., Ng, A.Y., et al.: Rectifier nonlinearities improve neural network acoustic models. In: Proceedings ICML, vol. 30, p. 3 (2013)"},{"key":"35_CR19","unstructured":"van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9(11) (2008)"},{"issue":"6","key":"35_CR20","doi-asserted-by":"publisher","first-page":"586","DOI":"10.1109\/34.24793","volume":"11","author":"P Maragos","year":"1989","unstructured":"Maragos, P.: A representation theory for morphological image and signal processing. IEEE Trans. Pattern Anal. Mach. Intell. 11(6), 586\u2013599 (1989)","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"issue":"5","key":"35_CR21","doi-asserted-by":"publisher","first-page":"728","DOI":"10.1109\/JPROC.2021.3065238","volume":"109","author":"P Maragos","year":"2021","unstructured":"Maragos, P., Charisopoulos, V., Theodosis, E.: Tropical geometry and machine learning. Proc. IEEE 109(5), 728\u2013755 (2021)","journal-title":"Proc. IEEE"},{"key":"35_CR22","doi-asserted-by":"crossref","unstructured":"Maragos, P., Theodosis, E.: Multivariate tropical regression and piecewise-linear surface fitting. In: ICASSP, pp. 3822\u20133826. IEEE (2020)","DOI":"10.1109\/ICASSP40776.2020.9054058"},{"volume-title":"Random Sets and Integral Geometry","year":"1974","author":"G Matheron","key":"35_CR23","unstructured":"Matheron, G.: Random Sets and Integral Geometry. Wiley, Hoboken (1974)"},{"issue":"4","key":"35_CR24","doi-asserted-by":"publisher","first-page":"115","DOI":"10.1007\/BF02478259","volume":"5","author":"WS McCulloch","year":"1943","unstructured":"McCulloch, W.S., Pitts, W.: A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. 5(4), 115\u2013133 (1943). https:\/\/doi.org\/10.1007\/BF02478259","journal-title":"Bull. Math. Biophys."},{"key":"35_CR25","unstructured":"Misiakos, P., Smyrnis, G., Retsinas, G., Maragos, P.: Neural network approximation based on hausdorff distance of tropical zonotopes. In: ICLR, pp. 0\u20138 (2022)"},{"issue":"1","key":"35_CR26","first-page":"87","volume":"4","author":"R Mondal","year":"2020","unstructured":"Mondal, R., Dey, M.S., Chanda, B.: Image restoration by learning morphological opening-closing network. MM-Theory Appl. 4(1), 87\u2013107 (2020)","journal-title":"MM-Theory Appl."},{"key":"35_CR27","unstructured":"Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: ICML (2010)"},{"key":"35_CR28","doi-asserted-by":"publisher","first-page":"294","DOI":"10.1006\/jmaa.2001.7647","volume":"263","author":"S Ovchinnikov","year":"2001","unstructured":"Ovchinnikov, S.: Boolean representation of manifolds functions. J. Math. Anal. Appl. 263, 294\u2013300 (2001)","journal-title":"J. Math. Anal. Appl."},{"key":"35_CR29","first-page":"297","volume":"43","author":"S Ovchinnikov","year":"2002","unstructured":"Ovchinnikov, S.: Max-min representations of piecewise linear functions. Beitr\u00e4ge Algebra Geom. 43, 297\u2013302 (2002)","journal-title":"Beitr\u00e4ge Algebra Geom."},{"issue":"6","key":"35_CR30","doi-asserted-by":"publisher","first-page":"945","DOI":"10.1016\/S0031-3203(99)00157-0","volume":"33","author":"LF Pessoa","year":"2000","unstructured":"Pessoa, L.F., Maragos, P.: Neural networks with hybrid morphological\/rank\/linear nodes: a unifying framework with applications to handwritten character recognition. Pattern Recogn. 33(6), 945\u2013960 (2000)","journal-title":"Pattern Recogn."},{"key":"35_CR31","doi-asserted-by":"crossref","unstructured":"Ritter, G.X., Sussner, P.: An introduction to morphological neural networks. In: 13th International Conference on Pattern Recognition, vol. 4, pp. 709\u2013717. IEEE (1996)","DOI":"10.1109\/ICPR.1996.547657"},{"key":"35_CR32","doi-asserted-by":"publisher","first-page":"288","DOI":"10.1016\/j.neunet.2019.12.003","volume":"123","author":"P Sussner","year":"2020","unstructured":"Sussner, P., Campiotti, I.: Extreme learning machine for a new hybrid morphological\/linear perceptron. Neural Netw. 123, 288\u2013298 (2020)","journal-title":"Neural Netw."},{"issue":"4","key":"35_CR33","doi-asserted-by":"publisher","first-page":"512","DOI":"10.3390\/math8040512","volume":"8","author":"ME Valle","year":"2020","unstructured":"Valle, M.E.: Reduced dilation-erosion perceptron for binary classification. Mathematics 8(4), 512 (2020)","journal-title":"Mathematics"},{"issue":"1","key":"35_CR34","doi-asserted-by":"publisher","first-page":"23","DOI":"10.1137\/21M1417867","volume":"15","author":"S Velasco-Forero","year":"2022","unstructured":"Velasco-Forero, S., Pag\u00e8s, R., Angulo, J.: Learnable EMD based on mathematical morphology. SIAM J. Imag. Sci. 15(1), 23\u201344 (2022)","journal-title":"SIAM J. Imag. Sci."},{"issue":"9","key":"35_CR35","doi-asserted-by":"publisher","first-page":"1889","DOI":"10.1109\/TCSI.2004.834521","volume":"51","author":"S Wang","year":"2004","unstructured":"Wang, S.: General constructive representations for continuous piecewise-linear functions. IEEE Trans. Circu. Syst. I 51(9), 1889\u20131896 (2004)","journal-title":"IEEE Trans. Circu. Syst. I"},{"key":"35_CR36","unstructured":"Zhang, L., Naitzat, G., Lim, L.H.: Tropical geometry of deep neural networks. In: International Conference on Machine Learning, pp. 5824\u20135832. PMLR (2018)"},{"key":"35_CR37","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"310","DOI":"10.1007\/978-3-030-20867-7_24","volume-title":"Mathematical Morphology and Its Applications to Signal and Image Processing","author":"Y Zhang","year":"2019","unstructured":"Zhang, Y., Blusseau, S., Velasco-Forero, S., Bloch, I., Angulo, J.: Max-plus operators applied to filter selection and model pruning in neural networks. In: Burgeth, B., Kleefeld, A., Naegel, B., Passat, N., Perret, B. (eds.) ISMM 2019. LNCS, vol. 11564, pp. 310\u2013322. Springer, Cham (2019). https:\/\/doi.org\/10.1007\/978-3-030-20867-7_24"}],"container-title":["Lecture Notes in Computer Science","Discrete Geometry and Mathematical Morphology"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-19897-7_35","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,10,20]],"date-time":"2022-10-20T17:18:48Z","timestamp":1666286328000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-19897-7_35"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022]]},"ISBN":["9783031198960","9783031198977"],"references-count":37,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-19897-7_35","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2022]]},"assertion":[{"value":"20 October 2022","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"DGMM","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Discrete Geometry and Mathematical Morphology","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Strasbourg","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"France","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2022","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"24 October 2022","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"27 October 2022","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"dgmm2022","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/dgmm2022.sciencesconf.org\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"EasyChair","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"45","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"33","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"73% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"No","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3 invited papers","order":10,"name":"additional_info_on_review_process","label":"Additional Info on Review Process","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}