{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,6]],"date-time":"2024-10-06T08:10:09Z","timestamp":1728202209835},"publisher-location":"Cham","reference-count":33,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783031198960"},{"type":"electronic","value":"9783031198977"}],"license":[{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2022]]},"DOI":"10.1007\/978-3-031-19897-7_21","type":"book-chapter","created":{"date-parts":[[2022,10,20]],"date-time":"2022-10-20T17:14:33Z","timestamp":1666286073000},"page":"261-273","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":6,"title":["Fast and\u00a0Effective Superpixel Segmentation Using Accurate Saliency Estimation"],"prefix":"10.1007","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-6037-5977","authenticated-orcid":false,"given":"Felipe","family":"Bel\u00e9m","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-7288-2485","authenticated-orcid":false,"given":"Isabela","family":"Borlido","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-4625-7840","authenticated-orcid":false,"given":"Leonardo","family":"Jo\u00e3o","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-0933-8342","authenticated-orcid":false,"given":"Benjamin","family":"Perret","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-2163-9714","authenticated-orcid":false,"given":"Jean","family":"Cousty","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-8522-2056","authenticated-orcid":false,"given":"Silvio J. F.","family":"Guimar\u00e3es","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-2914-5380","authenticated-orcid":false,"given":"Alexandre","family":"Falc\u00e3o","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2022,10,20]]},"reference":[{"issue":"11","key":"21_CR1","doi-asserted-by":"publisher","first-page":"2274","DOI":"10.1109\/TPAMI.2012.120","volume":"34","author":"R Achanta","year":"2012","unstructured":"Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., S\u00fcsstrunk, S.: SLIC superpixels compared to state-of-the-art superpixel methods. Trans. Pattern Anal. Mach. Intell. 34(11), 2274\u20132282 (2012)","journal-title":"Trans. Pattern Anal. Mach. Intell."},{"issue":"5","key":"21_CR2","doi-asserted-by":"publisher","first-page":"898","DOI":"10.1109\/TPAMI.2010.161","volume":"33","author":"P Arbelaez","year":"2011","unstructured":"Arbelaez, P., Maire, M., Fowlkes, C., Malik, J.: Contour detection and hierarchical image segmentation. Trans. Pattern Anal. Mach. Intell. 33(5), 898\u2013916 (2011)","journal-title":"Trans. Pattern Anal. Mach. Intell."},{"key":"21_CR3","doi-asserted-by":"crossref","unstructured":"Bel\u00e9m, F., Cousty, J., Perret, B., Guimar\u00e3es, S., Falc\u00e3o, A.: Towards a simple and efficient object-based superpixel delineation framework. In: 34th Conference on Graphics, Patterns and Images (SIBGRAPI), pp. 346\u2013353 (2021)","DOI":"10.1109\/SIBGRAPI54419.2021.00054"},{"key":"21_CR4","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"334","DOI":"10.1007\/978-3-030-13469-3_39","volume-title":"Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications","author":"F Bel\u00e9m","year":"2019","unstructured":"Bel\u00e9m, F., Guimar\u00e3es, S.J.F., Falc\u00e3o, A.X.: Superpixel segmentation by object-based iterative spanning forest. In: Vera-Rodriguez, R., Fierrez, J., Morales, A. (eds.) CIARP 2018. LNCS, vol. 11401, pp. 334\u2013341. Springer, Cham (2019). https:\/\/doi.org\/10.1007\/978-3-030-13469-3_39"},{"key":"21_CR5","doi-asserted-by":"crossref","unstructured":"Bel\u00e9m, F., Guimar\u00e3es, S., Falc\u00e3o, A.: Superpixel generation by the iterative spanning forest using object information. In: 33rd Conference on Graphics, Patterns and Images (SIBGRAPI), pp. 22\u201328 (2020). workshop of Thesis and Dissertations","DOI":"10.5753\/sibgrapi.est.2020.12979"},{"key":"21_CR6","doi-asserted-by":"publisher","first-page":"1440","DOI":"10.1109\/LSP.2020.3015433","volume":"27","author":"F Bel\u00e9m","year":"2020","unstructured":"Bel\u00e9m, F., Guimar\u00e3es, S., Falc\u00e3o, A.: Superpixel segmentation using dynamic and iterative spanning forest. Signal Process. Lett. 27, 1440\u20131444 (2020)","journal-title":"Signal Process. Lett."},{"key":"21_CR7","doi-asserted-by":"crossref","unstructured":"Bel\u00e9m, F., Melo, L., Guimar\u00e3es, S., Falc\u00e3o, A.: The importance of object-based seed sampling for superpixel segmentation. In: 32nd Conference on Graphics, Patterns and Images (SIBGRAPI), pp. 108\u2013115 (2019)","DOI":"10.1109\/SIBGRAPI.2019.00023"},{"key":"21_CR8","unstructured":"Bel\u00e9m, F., Perret, B., Cousty, J., Guimar\u00e3es, S., Falc\u00e3o, A.: Efficient multiscale object-based superpixel framework. arXiv preprint, pp. 1\u201319 (2022)"},{"key":"21_CR9","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"351","DOI":"10.1007\/978-3-030-76657-3_25","volume-title":"Discrete Geometry and Mathematical Morphology","author":"I Borlido Barcelos","year":"2021","unstructured":"Borlido Barcelos, I., Bel\u00e9m, F., Miranda, P., Falc\u00e3o, A.X., do Patroc\u00ednio, Z.K.G., Guimar\u00e3es, S.J.F.: Towards interactive image segmentation by dynamic and iterative spanning forest. In: Lindblad, J., Malmberg, F., Sladoje, N. (eds.) DGMM 2021. LNCS, vol. 12708, pp. 351\u2013364. Springer, Cham (2021). https:\/\/doi.org\/10.1007\/978-3-030-76657-3_25"},{"key":"21_CR10","doi-asserted-by":"publisher","first-page":"289","DOI":"10.1016\/j.imavis.2019.06.011","volume":"89","author":"PH Conze","year":"2019","unstructured":"Conze, P.H., Tilquin, F., Lamard, M., Heitz, F., Quellec, G.: Unsupervised learning-based long-term superpixel tracking. Image Vis. Comput. 89, 289\u2013301 (2019)","journal-title":"Image Vis. Comput."},{"issue":"1","key":"21_CR11","doi-asserted-by":"publisher","first-page":"19","DOI":"10.1109\/TPAMI.2004.1261076","volume":"26","author":"A Falc\u00e3o","year":"2004","unstructured":"Falc\u00e3o, A., Stolfi, J., Lotufo, R.: The image foresting transform: theory, algorithms, and applications. Trans. Pattern Anal. Mach. Intell. 26(1), 19\u201329 (2004)","journal-title":"Trans. Pattern Anal. Mach. Intell."},{"issue":"1","key":"21_CR12","first-page":"29","volume":"3","author":"A Fehri","year":"2019","unstructured":"Fehri, A., Velasco-Forero, S., Meyer, F.: Prior-based hierarchical segmentation highlighting structures of interest. Math. Morphol.-Theory Appl. 3(1), 29\u201344 (2019)","journal-title":"Math. Morphol.-Theory Appl."},{"key":"21_CR13","unstructured":"Galv\u00e3o, F., Falc\u00e3o, A., Chowdhury, A.: RISF: recursive iterative spanning forest for superpixel segmentation. In: 31st Conference on Graphics, Patterns and Images (SIBGRAPI), pp. 408\u2013415 (2018)"},{"key":"21_CR14","doi-asserted-by":"crossref","unstructured":"Jampani, V., Sun, D., Liu, M., Yang, M., Kautz, J.: Superpixel sampling networks. In: 18th European Conference on Computer Vision (ECCV), pp. 352\u2013368 (2018)","DOI":"10.1007\/978-3-030-01234-2_22"},{"key":"21_CR15","doi-asserted-by":"publisher","first-page":"3871","DOI":"10.1109\/TIP.2020.2967583","volume":"29","author":"X Kang","year":"2020","unstructured":"Kang, X., Zhu, L., Ming, A.: Dynamic random walk for superpixel segmentation. IEEE Trans. Image Process. 29, 3871\u20133884 (2020)","journal-title":"IEEE Trans. Image Process."},{"key":"21_CR16","doi-asserted-by":"crossref","unstructured":"Liu, M., Tuzel, O., Ramalingam, S., Chellappa, R.: Entropy rate superpixel segmentation. In: 24th Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2097\u20132104 (2011)","DOI":"10.1109\/CVPR.2011.5995323"},{"issue":"11","key":"21_CR17","doi-asserted-by":"publisher","first-page":"3707","DOI":"10.1109\/TIP.2015.2451011","volume":"24","author":"V Machairas","year":"2015","unstructured":"Machairas, V., Faessel, M., C\u00e1rdenas-Pe\u00f1a, D., Chabardes, T., Walter, T., Decenciere, E.: Waterpixels. IEEE Trans. Image Process. 24(11), 3707\u20133716 (2015)","journal-title":"IEEE Trans. Image Process."},{"key":"21_CR18","doi-asserted-by":"crossref","unstructured":"Mansilla, L., Miranda, P.: Oriented image foresting transform segmentation: connectivity constraints with adjustable width. In: 29th Conference on Graphics, Patterns and Images (SIBGRAPI), pp. 289\u2013296 (2016)","DOI":"10.1109\/SIBGRAPI.2016.047"},{"key":"21_CR19","unstructured":"Neubert, P., Protzel, P.: Superpixel benchmark and comparison. In: Forum Bildverarbeitung, vol. 6, pp. 1\u201312 (2012)"},{"key":"21_CR20","doi-asserted-by":"publisher","DOI":"10.1016\/j.patcog.2020.107404","volume":"106","author":"X Qin","year":"2020","unstructured":"Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O., Jagersand, M.: U2-net: going deeper with nested u-structure for salient object detection. Pattern Recogn. 106, 107404 (2020)","journal-title":"Pattern Recogn."},{"issue":"6","key":"21_CR21","doi-asserted-by":"publisher","first-page":"4180","DOI":"10.1109\/TGRS.2019.2961599","volume":"58","author":"P Sellars","year":"2020","unstructured":"Sellars, P., Aviles-Rivero, A.I., Sch\u00f6nlieb, C.B.: Superpixel contracted graph-based learning for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 58(6), 4180\u20134193 (2020)","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"issue":"4","key":"21_CR22","doi-asserted-by":"publisher","first-page":"717","DOI":"10.1109\/TPAMI.2015.2465960","volume":"38","author":"J Shi","year":"2015","unstructured":"Shi, J., Yan, Q., Xu, L., Jia, J.: Hierarchical image saliency detection on extended CSSD. Trans. Pattern Anal. Mach. Intell. 38(4), 717\u2013729 (2015)","journal-title":"Trans. Pattern Anal. Mach. Intell."},{"key":"21_CR23","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1016\/j.cviu.2017.03.007","volume":"166","author":"D Stutz","year":"2018","unstructured":"Stutz, D., Hermans, A., Leibe, B.: Superpixels: an evaluation of the state-of-the-art. Comput. Vis. Image Underst. 166, 1\u201327 (2018)","journal-title":"Comput. Vis. Image Underst."},{"issue":"7","key":"21_CR24","doi-asserted-by":"publisher","first-page":"3477","DOI":"10.1109\/TIP.2019.2897941","volume":"28","author":"J Vargas-Mu\u00f1oz","year":"2019","unstructured":"Vargas-Mu\u00f1oz, J., Chowdhury, A., Alexandre, E., Galv\u00e3o, F., Miranda, P., Falc\u00e3o, A.: An iterative spanning forest framework for superpixel segmentation. Trans. Image Process. 28(7), 3477\u20133489 (2019)","journal-title":"Trans. Image Process."},{"key":"21_CR25","doi-asserted-by":"publisher","first-page":"28","DOI":"10.1016\/j.image.2017.04.007","volume":"56","author":"M Wang","year":"2017","unstructured":"Wang, M., Liu, X., Gao, Y., Ma, X., Soomro, N.Q.: Superpixel segmentation: a benchmark. Signal Process. Image Commun. 56, 28\u201339 (2017)","journal-title":"Signal Process. Image Commun."},{"issue":"10","key":"21_CR26","doi-asserted-by":"publisher","first-page":"4838","DOI":"10.1109\/TIP.2018.2836300","volume":"27","author":"X Wei","year":"2018","unstructured":"Wei, X., Yang, Q., Gong, Y., Ahuja, N., Yang, M.: Superpixel hierarchy. Trans. Image Process. 27(10), 4838\u20134849 (2018)","journal-title":"Trans. Image Process."},{"key":"21_CR27","doi-asserted-by":"publisher","first-page":"152","DOI":"10.1016\/j.cag.2020.12.002","volume":"94","author":"J Wu","year":"2021","unstructured":"Wu, J., Liu, C., Li, B.: Texture-aware and structure-preserving superpixel segmentation. Comput. Graph. 94, 152\u2013163 (2021)","journal-title":"Comput. Graph."},{"key":"21_CR28","doi-asserted-by":"crossref","unstructured":"Yang, F., Sun, Q., Jin, H., Zhou, Z.: Superpixel segmentation with fully convolutional networks. In: 33rd Conference on Computer Vision and Pattern Recognition (CVPR) (2020)","DOI":"10.1109\/CVPR42600.2020.01398"},{"key":"21_CR29","doi-asserted-by":"crossref","unstructured":"Yu, Y., Yang, Y., Liu, K.: Edge-aware superpixel segmentation with unsupervised convolutional neural networks. In: 28th International Conference on Image Processing (ICIP), pp. 1504\u20131508 (2021)","DOI":"10.1109\/ICIP42928.2021.9506289"},{"key":"21_CR30","doi-asserted-by":"publisher","first-page":"7702","DOI":"10.1109\/TIP.2021.3108403","volume":"30","author":"Y Yuan","year":"2021","unstructured":"Yuan, Y., Zhang, W., Yu, H., Zhu, Z.: Superpixels with content-adaptive criteria. IEEE Trans. Image Process. 30, 7702\u20137716 (2021)","journal-title":"IEEE Trans. Image Process."},{"key":"21_CR31","doi-asserted-by":"publisher","DOI":"10.1016\/j.patcog.2020.107705","volume":"112","author":"J Zhang","year":"2021","unstructured":"Zhang, J., Aviles-Rivero, A.I., Heydecker, D., Zhuang, X., Chan, R., Sch\u00f6nlieb, C.B.: Dynamic spectral residual superpixels. Pattern Recogn. 112, 107705 (2021)","journal-title":"Pattern Recogn."},{"issue":"5","key":"21_CR32","doi-asserted-by":"publisher","first-page":"837","DOI":"10.3390\/app8050837","volume":"8","author":"W Zhao","year":"2018","unstructured":"Zhao, W., Fu, Y., Wei, X., Wang, H.: An improved image semantic segmentation method based on superpixels and conditional random fields. Appl. Sci. 8(5), 837 (2018)","journal-title":"Appl. Sci."},{"key":"21_CR33","doi-asserted-by":"crossref","unstructured":"Zhu, L., et al.: Learning the superpixel in a non-iterative and lifelong manner. In: 34th Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1225\u20131234 (2021)","DOI":"10.1109\/CVPR46437.2021.00128"}],"container-title":["Lecture Notes in Computer Science","Discrete Geometry and Mathematical Morphology"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-19897-7_21","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,10,6]],"date-time":"2024-10-06T07:39:38Z","timestamp":1728200378000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-19897-7_21"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022]]},"ISBN":["9783031198960","9783031198977"],"references-count":33,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-19897-7_21","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2022]]},"assertion":[{"value":"20 October 2022","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"DGMM","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Discrete Geometry and Mathematical Morphology","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Strasbourg","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"France","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2022","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"24 October 2022","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"27 October 2022","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"dgmm2022","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/dgmm2022.sciencesconf.org\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"EasyChair","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"45","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"33","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"73% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"No","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3 invited papers","order":10,"name":"additional_info_on_review_process","label":"Additional Info on Review Process","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}