{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,12]],"date-time":"2024-09-12T21:46:21Z","timestamp":1726177581193},"publisher-location":"Cham","reference-count":53,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031197741"},{"type":"electronic","value":"9783031197758"}],"license":[{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2022]]},"DOI":"10.1007\/978-3-031-19775-8_3","type":"book-chapter","created":{"date-parts":[[2022,10,22]],"date-time":"2022-10-22T12:12:59Z","timestamp":1666440779000},"page":"34-51","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":2,"title":["You Already Have It: A Generator-Free Low-Precision DNN Training Framework Using Stochastic Rounding"],"prefix":"10.1007","author":[{"ORCID":"http:\/\/orcid.org\/0000-0001-9844-992X","authenticated-orcid":false,"given":"Geng","family":"Yuan","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-8585-503X","authenticated-orcid":false,"given":"Sung-En","family":"Chang","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-8795-9297","authenticated-orcid":false,"given":"Qing","family":"Jin","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-3315-7368","authenticated-orcid":false,"given":"Alec","family":"Lu","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-1240-4785","authenticated-orcid":false,"given":"Yanyu","family":"Li","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-9883-7973","authenticated-orcid":false,"given":"Yushu","family":"Wu","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-8120-4456","authenticated-orcid":false,"given":"Zhenglun","family":"Kong","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-4325-521X","authenticated-orcid":false,"given":"Yanyue","family":"Xie","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-5287-5149","authenticated-orcid":false,"given":"Peiyan","family":"Dong","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-5172-5309","authenticated-orcid":false,"given":"Minghai","family":"Qin","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-3753-7648","authenticated-orcid":false,"given":"Xiaolong","family":"Ma","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-3385-2053","authenticated-orcid":false,"given":"Xulong","family":"Tang","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-0603-9697","authenticated-orcid":false,"given":"Zhenman","family":"Fang","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-3024-7990","authenticated-orcid":false,"given":"Yanzhi","family":"Wang","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2022,10,23]]},"reference":[{"key":"3_CR1","doi-asserted-by":"publisher","unstructured":"IEEE standard for floating-point arithmetic. IEEE Std 754\u20132019 (Revision of IEEE 754\u20132008), pp. 1\u201384 (2019). https:\/\/doi.org\/10.1109\/IEEESTD.2019.8766229","DOI":"10.1109\/IEEESTD.2019.8766229"},{"key":"3_CR2","doi-asserted-by":"crossref","unstructured":"Best, S., Xu, X.: An all-digital true random number generator based on chaotic cellular automata topology. In: 2019 IEEE\/ACM International Conference on Computer-Aided Design (ICCAD), pp. 1\u20138. IEEE (2019)","DOI":"10.1109\/ICCAD45719.2019.8942050"},{"key":"3_CR3","doi-asserted-by":"crossref","unstructured":"Bevilacqua, M., Roumy, A., Guillemot, C., Alberi-Morel, M.L.: Low-complexity single-image super-resolution based on nonnegative neighbor embedding. In: Proceedings of the British Machine Vision Conference, pp. 135.1\u2013135.10. BMVA Press (2012)","DOI":"10.5244\/C.26.135"},{"issue":"3","key":"3_CR4","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1145\/3242897","volume":"11","author":"M Blott","year":"2018","unstructured":"Blott, M., et al.: FINN-R: an end-to-end deep-learning framework for fast exploration of quantized neural networks. ACM Trans. Reconfigurable Technol. Syst. (TRETS) 11(3), 1\u201323 (2018)","journal-title":"ACM Trans. Reconfigurable Technol. Syst. (TRETS)"},{"key":"3_CR5","doi-asserted-by":"crossref","unstructured":"Chang, S.E., et al.: Mix and match: a novel FPGA-centric deep neural network quantization framework. In: 2021 IEEE International Symposium on High-Performance Computer Architecture (HPCA), pp. 208\u2013220. IEEE (2021)","DOI":"10.1109\/HPCA51647.2021.00027"},{"key":"3_CR6","doi-asserted-by":"crossref","unstructured":"Chu, C., Wang, Y., Zhao, Y., Ma, X., Ye, S., Hong, Y., Liang, X., Han, Y., Jiang, L.: PIM-prune: fine-grain DCNN pruning for crossbar-based process-in-memory architecture. In: 2020 57th ACM\/IEEE Design Automation Conference (DAC), pp. 1\u20136. IEEE (2020)","DOI":"10.1109\/DAC18072.2020.9218523"},{"key":"3_CR7","doi-asserted-by":"crossref","unstructured":"Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: 2009 IEEE conference on computer vision and pattern recognition, pp. 248\u2013255. IEEE (2009)","DOI":"10.1109\/CVPR.2009.5206848"},{"key":"3_CR8","unstructured":"Dettmers, T., Lewis, M., Shleifer, S., Zettlemoyer, L.: 8-bit optimizers via block-wise quantization (2021)"},{"key":"3_CR9","unstructured":"Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)"},{"key":"3_CR10","unstructured":"Fan, Y., Yu, J., Huang, T.S.: Wide-activated deep residual networks based restoration for BPG-compressed images. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 2621\u20132624 (2018)"},{"key":"3_CR11","doi-asserted-by":"crossref","unstructured":"Fang, H., Mei, Z., Shrestha, A., Zhao, Z., Li, Y., Qiu, Q.: Encoding, model, and architecture: Systematic optimization for spiking neural network in FPGAs. In: 2020 IEEE\/ACM International Conference On Computer Aided Design (ICCAD), pp. 1\u20139. IEEE (2020)","DOI":"10.1145\/3400302.3415608"},{"key":"3_CR12","doi-asserted-by":"crossref","unstructured":"Fang, H., Shrestha, A., Zhao, Z., Qiu, Q.: Exploiting neuron and synapse filter dynamics in spatial temporal learning of deep spiking neural network. In: Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence. IJCAI\u201920 (2021)","DOI":"10.24963\/ijcai.2020\/388"},{"key":"3_CR13","doi-asserted-by":"crossref","unstructured":"Fang, H., Taylor, B., Li, Z., Mei, Z., Li, H.H., Qiu, Q.: Neuromorphic algorithm-hardware codesign for temporal pattern learning. In: 2021 58th ACM\/IEEE Design Automation Conference (DAC), pp. 361\u2013366. IEEE (2021)","DOI":"10.1109\/DAC18074.2021.9586133"},{"key":"3_CR14","unstructured":"Gupta, S., Agrawal, A., Gopalakrishnan, K., Narayanan, P.: Deep learning with limited numerical precision. In: International conference on machine learning, pp. 1737\u20131746. PMLR (2015)"},{"key":"3_CR15","doi-asserted-by":"crossref","unstructured":"He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), pp. 770\u2013778 (2016)","DOI":"10.1109\/CVPR.2016.90"},{"issue":"6","key":"3_CR16","doi-asserted-by":"publisher","first-page":"291","DOI":"10.1016\/0925-2312(92)90014-G","volume":"4","author":"M H\u00f6hfeld","year":"1992","unstructured":"H\u00f6hfeld, M., Fahlman, S.E.: Probabilistic rounding in neural network learning with limited precision. Neurocomputing 4(6), 291\u2013299 (1992)","journal-title":"Neurocomputing"},{"key":"3_CR17","doi-asserted-by":"crossref","unstructured":"Hou, Z., et al.: Chex: channel exploration for CNN model compression. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 12287\u201312298 (2022)","DOI":"10.1109\/CVPR52688.2022.01197"},{"key":"3_CR18","doi-asserted-by":"crossref","unstructured":"Kong, Z., et al.: SPViT: Enabling faster vision transformers via soft token pruning. arXiv preprint arXiv:2112.13890 (2021)","DOI":"10.1007\/978-3-031-20083-0_37"},{"key":"3_CR19","doi-asserted-by":"publisher","unstructured":"Krawczyk, H.: LFSR-based hashing and authentication. In: Annual International Cryptology Conference, pp. 129\u2013139. Springer, Heidelberg (1994). https:\/\/doi.org\/10.1007\/3-540-48658-5_15","DOI":"10.1007\/3-540-48658-5_15"},{"key":"3_CR20","unstructured":"Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny images (2009)"},{"key":"3_CR21","doi-asserted-by":"crossref","unstructured":"Li, Y., Fang, H., Li, M., Ma, Y., Qiu, Q.: Neural network pruning and fast training for DRL-based UAV trajectory planning. In: 2022 27th Asia and South Pacific Design Automation Conference (ASP-DAC), pp. 574\u2013579. IEEE (2022)","DOI":"10.1109\/ASP-DAC52403.2022.9712561"},{"key":"3_CR22","unstructured":"Liu, N., et al.: Lottery ticket preserves weight correlation: is it desirable or not? In: International Conference on Machine Learning (ICML), pp. 7011\u20137020. PMLR (2021)"},{"issue":"2","key":"3_CR23","doi-asserted-by":"publisher","DOI":"10.1088\/1674-4926\/41\/2\/022403","volume":"41","author":"C Luo","year":"2020","unstructured":"Luo, C., Sit, M.K., Fan, H., Liu, S., Luk, W., Guo, C.: Towards efficient deep neural network training by FPGA-based batch-level parallelism. J. Semiconduct. 41(2), 022403 (2020)","journal-title":"J. Semiconduct."},{"issue":"12","key":"3_CR24","doi-asserted-by":"publisher","first-page":"4970","DOI":"10.1109\/TCSI.2020.3019030","volume":"67","author":"Y Luo","year":"2020","unstructured":"Luo, Y., Wang, W., Best, S., Wang, Y., Xu, X.: A high-performance and secure TRNG based on chaotic cellular automata topology. IEEE Trans. Circuit Syst. I: Regul. Pap. 67(12), 4970\u20134983 (2020)","journal-title":"IEEE Trans. Circuit Syst. I: Regul. Pap."},{"key":"3_CR25","doi-asserted-by":"crossref","unstructured":"Ma, X., et al.: PCONV: the missing but desirable sparsity in DNN weight pruning for real-time execution on mobile devices. In: Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), vol. 34, pp. 5117\u20135124 (2020)","DOI":"10.1609\/aaai.v34i04.5954"},{"key":"3_CR26","doi-asserted-by":"crossref","unstructured":"Ma, X., et al.: Non-structured DNN weight pruning-is it beneficial in any platform? IEEE Transactions on Neural Networks and Learning Systems (TNNLS) (2021)","DOI":"10.1109\/TNNLS.2021.3063265"},{"key":"3_CR27","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"629","DOI":"10.1007\/978-3-030-58601-0_37","volume-title":"Computer Vision \u2013 ECCV 2020","author":"X Ma","year":"2020","unstructured":"Ma, X., et al.: An image enhancing pattern-based sparsity for real-time inference on mobile devices. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12358, pp. 629\u2013645. Springer, Cham (2020). https:\/\/doi.org\/10.1007\/978-3-030-58601-0_37"},{"key":"3_CR28","unstructured":"Ma, X., et al.: Effective model sparsification by scheduled grow-and-prune methods. In: Proceedings of the International Conference on Learning Representations (ICLR) (2021)"},{"key":"3_CR29","doi-asserted-by":"crossref","unstructured":"Ma, X., et al.: BLCR: Towards real-time DNN execution with block-based reweighted pruning. In: International Symposium on Quality Electronic Design (ISQED), pp. 1\u20138. IEEE (2022)","DOI":"10.1109\/ISQED54688.2022.9806237"},{"key":"3_CR30","doi-asserted-by":"crossref","unstructured":"Ma, X., et al.: Tiny but accurate: a pruned, quantized and optimized memristor crossbar framework for ultra efficient DNN implementation. In: 2020 25th Asia and South Pacific Design Automation Conference (ASP-DAC), pp. 301\u2013306. IEEE (2020)","DOI":"10.1109\/ASP-DAC47756.2020.9045658"},{"key":"3_CR31","unstructured":"Ma, X., et al.: Sanity checks for lottery tickets: does your winning ticket really win the jackpot? In: Advances in Neural Information Processing Systems (NeurIPS), vol. 34 (2021)"},{"key":"3_CR32","doi-asserted-by":"crossref","unstructured":"Mikaitis, M.: Stochastic rounding: algorithms and hardware accelerator. In: 2021 International Joint Conference on Neural Networks (IJCNN), pp. 1\u20136. IEEE (2021)","DOI":"10.1109\/IJCNN52387.2021.9533756"},{"key":"3_CR33","doi-asserted-by":"crossref","unstructured":"Na, T., Ko, J.H., Kung, J., Mukhopadhyay, S.: On-chip training of recurrent neural networks with limited numerical precision. In: 2017 International Joint Conference on Neural Networks (IJCNN), pp. 3716\u20133723. IEEE (2017)","DOI":"10.1109\/IJCNN.2017.7966324"},{"key":"3_CR34","doi-asserted-by":"crossref","unstructured":"Niu, W., et al.: GRIM: a general, real-time deep learning inference framework for mobile devices based on fine-grained structured weight sparsity. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI) (2021)","DOI":"10.1109\/TPAMI.2021.3089687"},{"key":"3_CR35","doi-asserted-by":"crossref","unstructured":"Niu, W., et al.: PatDNN: achieving real-time DNN execution on mobile devices with pattern-based weight pruning. In: Proceedings of the Twenty-Fifth International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS), pp. 907\u2013922 (2020)","DOI":"10.1145\/3373376.3378534"},{"key":"3_CR36","unstructured":"Roth Jr, C.H., John, L.K.: Digital systems design using VHDL. Cengage Learning (2016)"},{"key":"3_CR37","doi-asserted-by":"crossref","unstructured":"Rukhin, A., Soto, J., Nechvatal, J., Smid, M., Barker, E.: A statistical test suite for random and pseudorandom number generators for cryptographic applications. Technical report, Booz-allen and hamilton inc mclean va (2001)","DOI":"10.6028\/NIST.SP.800-22"},{"issue":"2","key":"3_CR38","doi-asserted-by":"publisher","DOI":"10.1088\/1674-4926\/41\/2\/022404","volume":"41","author":"C Su","year":"2020","unstructured":"Su, C., Zhou, S., Feng, L., Zhang, W.: Towards high performance low bitwidth training for deep neural networks. J. Semiconduct. 41(2), 022404 (2020)","journal-title":"J. Semiconduct."},{"key":"3_CR39","doi-asserted-by":"crossref","unstructured":"Sun, M., et al.: FILM-QNN: Efficient FPGA acceleration of deep neural networks with intra-layer, mixed-precision quantization. In: Proceedings of the 2022 ACM\/SIGDA International Symposium on Field-Programmable Gate Arrays, pp. 134\u2013145 (2022)","DOI":"10.1145\/3490422.3502364"},{"key":"3_CR40","unstructured":"Sun, M., et al.: VAQF: fully automatic software-hardware co-design framework for low-bit vision transformer. arXiv preprint arXiv:2201.06618 (2022)"},{"key":"3_CR41","unstructured":"Timofte, R., Gu, S., Wu, J., Van Gool, L.: NTIRE 2018 challenge on single image super-resolution: methods and results. In: Proceedings of the IEEE conference on computer vision and pattern recognition workshops, pp. 852\u2013863 (2018)"},{"key":"3_CR42","doi-asserted-by":"crossref","unstructured":"Wang, A., Singh, A., Michael, J., Hill, F., Levy, O., Bowman, S.R.: Glue: A multi-task benchmark and analysis platform for natural language understanding. In: Proceedings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP, pp. 353\u2013355 (2018)","DOI":"10.18653\/v1\/W18-5446"},{"key":"3_CR43","unstructured":"Wang, N., Choi, J., Brand, D., Chen, C.Y., Gopalakrishnan, K.: Training deep neural networks with 8-bit floating point numbers. In: Advances in neural information processing systems, vol. 31 (2018)"},{"key":"3_CR44","unstructured":"Wu, S., Li, G., Chen, F., Shi, L.: Training and inference with integers in deep neural networks. arXiv preprint arXiv:1802.04680 (2018)"},{"key":"3_CR45","unstructured":"Xia, L., Anthonissen, M., Hochstenbach, M., Koren, B.: A simple and efficient stochastic rounding method for training neural networks in low precision. arXiv preprint arXiv:2103.13445 (2021)"},{"key":"3_CR46","doi-asserted-by":"publisher","first-page":"70","DOI":"10.1016\/j.neunet.2019.12.027","volume":"125","author":"Y Yang","year":"2020","unstructured":"Yang, Y., Deng, L., Wu, S., Yan, T., Xie, Y., Li, G.: Training high-performance and large-scale deep neural networks with full 8-bit integers. Neural Netw. 125, 70\u201382 (2020)","journal-title":"Neural Netw."},{"key":"3_CR47","doi-asserted-by":"crossref","unstructured":"Yuan, G., et al.: TinyADC: Peripheral circuit-aware weight pruning framework for mixed-signal DNN accelerators. In: 2021 Design, Automation & Test in Europe Conference & Exhibition (DATE), pp. 926\u2013931. IEEE (2021)","DOI":"10.23919\/DATE51398.2021.9474235"},{"key":"3_CR48","doi-asserted-by":"crossref","unstructured":"Yuan, G., et al.: Improving DNN fault tolerance using weight pruning and differential crossbar mapping for ReRAM-based edge AI. In: 2021 22nd International Symposium on Quality Electronic Design (ISQED), pp. 135\u2013141. IEEE (2021)","DOI":"10.1109\/ISQED51717.2021.9424332"},{"key":"3_CR49","doi-asserted-by":"crossref","unstructured":"Yuan, G., et al.: An ultra-efficient memristor-based DNN framework with structured weight pruning and quantization using ADMM. In: 2019 IEEE\/ACM International Symposium on Low Power Electronics and Design (ISLPED), pp. 1\u20136. IEEE (2019)","DOI":"10.1109\/ISLPED.2019.8824944"},{"key":"3_CR50","unstructured":"Yuan, G., et al.: MEST: Accurate and fast memory-economic sparse training framework on the edge. In: Advances in Neural Information Processing Systems (NeurIPS), vol. 34 (2021)"},{"issue":"11","key":"3_CR51","doi-asserted-by":"publisher","first-page":"2072","DOI":"10.1109\/TCAD.2017.2785257","volume":"38","author":"C Zhang","year":"2018","unstructured":"Zhang, C., Sun, G., Fang, Z., Zhou, P., Pan, P., Cong, J.: Caffeine: toward uniformed representation and acceleration for deep convolutional neural networks. IEEE Trans. Comput. Aid. Design Integr. Circ. Syst. 38(11), 2072\u20132085 (2018)","journal-title":"IEEE Trans. Comput. Aid. Design Integr. Circ. Syst."},{"key":"3_CR52","doi-asserted-by":"crossref","unstructured":"Zhao, K., et al.: Distribution adaptive INT8 quantization for training CNNs. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence (2021)","DOI":"10.1609\/aaai.v35i4.16462"},{"key":"3_CR53","doi-asserted-by":"crossref","unstructured":"Zhu, F., et al.: Towards unified INT8 training for convolutional neural network. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 1969\u20131979 (2020)","DOI":"10.1109\/CVPR42600.2020.00204"}],"container-title":["Lecture Notes in Computer Science","Computer Vision \u2013 ECCV 2022"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-19775-8_3","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,3,13]],"date-time":"2024-03-13T13:33:04Z","timestamp":1710336784000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-19775-8_3"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022]]},"ISBN":["9783031197741","9783031197758"],"references-count":53,"URL":"http:\/\/dx.doi.org\/10.1007\/978-3-031-19775-8_3","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2022]]},"assertion":[{"value":"23 October 2022","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ECCV","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"European Conference on Computer Vision","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Tel Aviv","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Israel","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2022","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"23 October 2022","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"27 October 2022","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"17","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"eccv2022","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/eccv2022.ecva.net\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Double-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"CMT","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"5804","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"1645","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"28% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3.21","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3.91","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}