{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,12]],"date-time":"2024-09-12T20:49:25Z","timestamp":1726174165878},"publisher-location":"Cham","reference-count":30,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031164422"},{"type":"electronic","value":"9783031164439"}],"license":[{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2022]]},"DOI":"10.1007\/978-3-031-16443-9_37","type":"book-chapter","created":{"date-parts":[[2022,9,15]],"date-time":"2022-09-15T09:30:11Z","timestamp":1663234211000},"page":"380-390","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":1,"title":["Learning Towards Synchronous Network Memorizability and\u00a0Generalizability for\u00a0Continual Segmentation Across Multiple Sites"],"prefix":"10.1007","author":[{"given":"Jingyang","family":"Zhang","sequence":"first","affiliation":[]},{"given":"Peng","family":"Xue","sequence":"additional","affiliation":[]},{"given":"Ran","family":"Gu","sequence":"additional","affiliation":[]},{"given":"Yuning","family":"Gu","sequence":"additional","affiliation":[]},{"given":"Mianxin","family":"Liu","sequence":"additional","affiliation":[]},{"given":"Yongsheng","family":"Pan","sequence":"additional","affiliation":[]},{"given":"Zhiming","family":"Cui","sequence":"additional","affiliation":[]},{"given":"Jiawei","family":"Huang","sequence":"additional","affiliation":[]},{"given":"Lei","family":"Ma","sequence":"additional","affiliation":[]},{"given":"Dinggang","family":"Shen","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2022,9,16]]},"reference":[{"key":"37_CR1","unstructured":"Bloch, N., et al.: NCI-ISBI 2013 challenge: automated segmentation of prostate structures. Cancer Imaging Arch. (2015)"},{"key":"37_CR2","doi-asserted-by":"crossref","unstructured":"Castro, F.M., Mar\u00edn-Jim\u00e9nez, M.J., Guil, N., Schmid, C., Alahari, K.: End-to-end incremental learning. In: Proceedings of the European conference on computer vision (ECCV), pp. 233\u2013248 (2018)","DOI":"10.1007\/978-3-030-01258-8_15"},{"key":"37_CR3","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"143","DOI":"10.1007\/978-3-030-00919-9_17","volume-title":"Machine Learning in Medical Imaging","author":"C Chen","year":"2018","unstructured":"Chen, C., Dou, Q., Chen, H., Heng, P.-A.: Semantic-aware generative adversarial nets for unsupervised domain adaptation in chest X-ray segmentation. In: Shi, Y., Suk, H.-I., Liu, M. (eds.) MLMI 2018. LNCS, vol. 11046, pp. 143\u2013151. Springer, Cham (2018). https:\/\/doi.org\/10.1007\/978-3-030-00919-9_17"},{"key":"37_CR4","doi-asserted-by":"crossref","unstructured":"Delange, M., et al.: A continual learning survey: defying forgetting in classification tasks. IEEE Trans. Pattern Analy. Mach. Intell. (2021)","DOI":"10.1109\/TPAMI.2021.3057446"},{"issue":"1","key":"37_CR5","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1038\/s41746-020-0265-z","volume":"3","author":"SS Dhruva","year":"2020","unstructured":"Dhruva, S.S., et al.: Aggregating multiple real-world data sources using a patient-centered health-data-sharing platform. NPJ Digit. Med. 3(1), 1\u20139 (2020)","journal-title":"NPJ Digit. Med."},{"key":"37_CR6","unstructured":"Dou, Q., Coelho de Castro, D., Kamnitsas, K., Glocker, B.: Domain generalization via model-agnostic learning of semantic features. Adv. Neural Inf. Process. Syst. 32, 6450\u20136461 (2019)"},{"key":"37_CR7","unstructured":"Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation of deep networks. In: International Conference on Machine Learning, pp. 1126\u20131135. PMLR (2017)"},{"issue":"1","key":"37_CR8","first-page":"2030","volume":"17","author":"Y Ganin","year":"2016","unstructured":"Ganin, Y.: Domain-adversarial training of neural networks. J. Mach. Learn. Res. 17(1), 2030\u20132096 (2016)","journal-title":"J. Mach. Learn. Res."},{"key":"37_CR9","unstructured":"Gupta, G., Yadav, K., Paull, L.: La-MAML: look-ahead meta learning for continual learning. arXiv preprint arXiv:2007.13904 (2020)"},{"key":"37_CR10","unstructured":"Koh, P.W., et al.: Wilds: A benchmark of in-the-wild distribution shifts. In: International Conference on Machine Learning, pp. 5637\u20135664. PMLR (2021)"},{"key":"37_CR11","doi-asserted-by":"publisher","first-page":"8","DOI":"10.1016\/j.compbiomed.2015.02.009","volume":"60","author":"G Lema\u00eetre","year":"2015","unstructured":"Lema\u00eetre, G., et al.: Computer-aided detection and diagnosis for prostate cancer based on mono and multi-parametric MRI: A review. Comput. Biol. Med. 60, 8\u201331 (2015)","journal-title":"Comput. Biol. Med."},{"key":"37_CR12","doi-asserted-by":"crossref","unstructured":"Li, D., Yang, Y., Song, Y.Z., Hospedales, T.M.: Learning to generalize: meta-learning for domain generalization. In: Thirty-Second AAAI Conference on Artificial Intelligence (2018)","DOI":"10.1609\/aaai.v32i1.11596"},{"key":"37_CR13","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"169","DOI":"10.1007\/978-3-030-59710-8_17","volume-title":"Medical Image Computing and Computer Assisted Intervention \u2013 MICCAI 2020","author":"Z Li","year":"2020","unstructured":"Li, Z., Zhong, C., Wang, R., Zheng, W.-S.: Continual learning of new diseases with dual distillation and ensemble strategy. In: Martel, M.A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12261, pp. 169\u2013178. Springer, Cham (2020). https:\/\/doi.org\/10.1007\/978-3-030-59710-8_17"},{"issue":"2","key":"37_CR14","doi-asserted-by":"publisher","first-page":"359","DOI":"10.1016\/j.media.2013.12.002","volume":"18","author":"G Litjens","year":"2014","unstructured":"Litjens, G., et al.: Evaluation of prostate segmentation algorithms for MRI: the PROMISE12 challenge. Med. Image Anal. 18(2), 359\u2013373 (2014)","journal-title":"Med. Image Anal."},{"issue":"9","key":"37_CR15","doi-asserted-by":"publisher","first-page":"2713","DOI":"10.1109\/TMI.2020.2974574","volume":"39","author":"Q Liu","year":"2020","unstructured":"Liu, Q., Dou, Q., Yu, L., Heng, P.A.: MS-Net: Multi-site network for improving prostate segmentation with heterogeneous MRI data. IEEE Trans. Med. Imag. 39(9), 2713\u20132724 (2020)","journal-title":"IEEE Trans. Med. Imag."},{"key":"37_CR16","doi-asserted-by":"crossref","unstructured":"Liu, Q., Chen, C., Qin, J., Dou, Q., Heng, P.A.: FedDG: Federated domain generalization on medical image segmentation via episodic learning in continuous frequency space. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 1013\u20131023 (2021)","DOI":"10.1109\/CVPR46437.2021.00107"},{"key":"37_CR17","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"475","DOI":"10.1007\/978-3-030-59713-9_46","volume-title":"Medical Image Computing and Computer Assisted Intervention \u2013 MICCAI 2020","author":"Q Liu","year":"2020","unstructured":"Liu, Q., Dou, Q., Heng, P.-A.: Shape-aware meta-learning for generalizing prostate MRI segmentation to unseen domains. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12262, pp. 475\u2013485. Springer, Cham (2020). https:\/\/doi.org\/10.1007\/978-3-030-59713-9_46"},{"key":"37_CR18","unstructured":"Lopez-Paz, D., Ranzato, M.: Gradient episodic memory for continual learning. In: Advances in Neural Information Processing Systems, pp. 6467\u20136476 (2017)"},{"key":"37_CR19","doi-asserted-by":"crossref","unstructured":"McCloskey, M., Cohen, N.J.: Catastrophic interference in connectionist networks: the sequential learning problem. In: Psychology of Learning and Motivation, vol. 24, pp. 109\u2013165. Elsevier, San Diego (1989)","DOI":"10.1016\/S0079-7421(08)60536-8"},{"issue":"3","key":"37_CR20","doi-asserted-by":"publisher","first-page":"1123","DOI":"10.1109\/TCYB.2018.2797905","volume":"49","author":"D Nie","year":"2018","unstructured":"Nie, D., Wang, L., Adeli, E., Lao, C., Lin, W., Shen, D.: 3-d fully convolutional networks for multimodal isointense infant brain image segmentation. IEEE Trans. Cybernet. 49(3), 1123\u20131136 (2018)","journal-title":"IEEE Trans. Cybernet."},{"key":"37_CR21","doi-asserted-by":"crossref","unstructured":"Rebuffi, S.A., Kolesnikov, A., Sperl, G., Lampert, C.H.: ICARL: Incremental classifier and representation learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2001\u20132010 (2017)","DOI":"10.1109\/CVPR.2017.587"},{"key":"37_CR22","unstructured":"Riemer, M., et al.: Learning to learn without forgetting by maximizing transfer and minimizing interference. arXiv preprint arXiv:1810.11910 (2018)"},{"key":"37_CR23","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"234","DOI":"10.1007\/978-3-319-24574-4_28","volume-title":"Medical Image Computing and Computer-Assisted Intervention \u2013 MICCAI 2015","author":"O Ronneberger","year":"2015","unstructured":"Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234\u2013241. Springer, Cham (2015). https:\/\/doi.org\/10.1007\/978-3-319-24574-4_28"},{"key":"37_CR24","unstructured":"Sener, O., Savarese, S.: Active learning for convolutional neural networks: a core-set approach. arXiv preprint arXiv:1708.00489 (2017)"},{"key":"37_CR25","unstructured":"Shi, Y., et al.: Gradient matching for domain generalization. arXiv preprint arXiv:2104.09937 (2021)"},{"issue":"12","key":"37_CR26","doi-asserted-by":"publisher","first-page":"2591","DOI":"10.1109\/TCSVT.2016.2589879","volume":"27","author":"K Wang","year":"2016","unstructured":"Wang, K., Zhang, D., Li, Y., Zhang, R., Lin, L.: Cost-effective active learning for deep image classification. IEEE Trans. Circ. Syst. Video Technol. 27(12), 2591\u20132600 (2016)","journal-title":"IEEE Trans. Circ. Syst. Video Technol."},{"key":"37_CR27","doi-asserted-by":"publisher","first-page":"31","DOI":"10.1016\/j.media.2018.03.011","volume":"47","author":"L Xiang","year":"2018","unstructured":"Xiang, L., Wang, Q., Nie, D., Zhang, L., Jin, X., Qiao, Y., Shen, D.: Deep embedding convolutional neural network for synthesizing CT image from T1-weighted MR image. Med. Image Anal. 47, 31\u201344 (2018)","journal-title":"Med. Image Anal."},{"key":"37_CR28","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"389","DOI":"10.1007\/978-3-030-87193-2_37","volume-title":"Medical Image Computing and Computer Assisted Intervention \u2013 MICCAI 2021","author":"J Zhang","year":"2021","unstructured":"Zhang, J., Gu, R., Wang, G., Gu, L.: Comprehensive importance-based selective regularization for continual segmentation across multiple sites. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12901, pp. 389\u2013399. Springer, Cham (2021). https:\/\/doi.org\/10.1007\/978-3-030-87193-2_37"},{"key":"37_CR29","doi-asserted-by":"publisher","first-page":"114","DOI":"10.1016\/j.neucom.2020.06.122","volume":"417","author":"I Zhang","year":"2020","unstructured":"Zhang, I., et al.: Weakly supervised vessel segmentation in x-ray angiograms by self-paced learning from noisy labels with suggestive annotation. Neurocomputing 417, 114\u2013127 (2020)","journal-title":"Neurocomputing"},{"key":"37_CR30","doi-asserted-by":"crossref","unstructured":"Zhou, K., Liu, Z., Qiao, Y., Xiang, T., Loy, C.C.: Domain generalization: a survey. arXiv preprint arXiv:2103.02503 (2021)","DOI":"10.1109\/TPAMI.2022.3195549"}],"container-title":["Lecture Notes in Computer Science","Medical Image Computing and Computer Assisted Intervention \u2013 MICCAI 2022"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-16443-9_37","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,3,7]],"date-time":"2024-03-07T16:47:14Z","timestamp":1709830034000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-16443-9_37"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022]]},"ISBN":["9783031164422","9783031164439"],"references-count":30,"URL":"http:\/\/dx.doi.org\/10.1007\/978-3-031-16443-9_37","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2022]]},"assertion":[{"value":"16 September 2022","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"MICCAI","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Medical Image Computing and Computer-Assisted Intervention","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Singapore","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Singapore","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2022","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"18 September 2022","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"22 September 2022","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"25","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"miccai2022","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Double-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Microsoft Conference","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"1831","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"574","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"31% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"5","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}