iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://api.crossref.org/works/10.1007/978-3-031-15937-4_63
{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,12]],"date-time":"2024-09-12T20:33:19Z","timestamp":1726173199265},"publisher-location":"Cham","reference-count":24,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031159367"},{"type":"electronic","value":"9783031159374"}],"license":[{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2022]]},"DOI":"10.1007\/978-3-031-15937-4_63","type":"book-chapter","created":{"date-parts":[[2022,9,6]],"date-time":"2022-09-06T08:15:35Z","timestamp":1662452135000},"page":"756-768","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["RegionDrop: Fast Human Pose Estimation Using Annotation-Aware Spatial Sparsity"],"prefix":"10.1007","author":[{"given":"Youki","family":"Sada","sequence":"first","affiliation":[]},{"given":"Seiya","family":"Shibata","sequence":"additional","affiliation":[]},{"given":"Yuki","family":"Kobayashi","sequence":"additional","affiliation":[]},{"given":"Takashi","family":"Takenaka","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2022,9,7]]},"reference":[{"key":"63_CR1","doi-asserted-by":"crossref","unstructured":"Andriluka, M., Pishchulin, L., Gehler, P., Schiele, B.: 2D human pose estimation: new benchmark and state of the art analysis. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2014)","DOI":"10.1109\/CVPR.2014.471"},{"key":"63_CR2","doi-asserted-by":"crossref","unstructured":"Cao, Z., Simon, T., Wei, S.E., Sheikh, Y.: Realtime multi-person 2D pose estimation using part affinity fields. In: CVPR, pp. 7291\u20137299 (2017)","DOI":"10.1109\/CVPR.2017.143"},{"key":"63_CR3","doi-asserted-by":"crossref","unstructured":"Chen, L., et al.: SCA-CNN: spatial and channel-wise attention in convolutional networks for image captioning. In: CVPR, pp. 5659\u20135667 (2017)","DOI":"10.1109\/CVPR.2017.667"},{"key":"63_CR4","doi-asserted-by":"crossref","unstructured":"Cheng, B., Xiao, B., Wang, J., Shi, H., Huang, T.S., Zhang, L.: HigherHRNet: scale-aware representation learning for bottom-up human pose estimation. In: CVPR, pp. 5386\u20135395 (2020)","DOI":"10.1109\/CVPR42600.2020.00543"},{"key":"63_CR5","doi-asserted-by":"crossref","unstructured":"Figurnov, M., et al.: Spatially adaptive computation time for residual networks. In: CVPR, pp. 1039\u20131048 (2017)","DOI":"10.1109\/CVPR.2017.194"},{"key":"63_CR6","doi-asserted-by":"crossref","unstructured":"Geng, Z., Sun, K., Xiao, B., Zhang, Z., Wang, J.: Bottom-up human pose estimation via disentangled keypoint regression. In: CVPR, pp. 14676\u201314686 (2021)","DOI":"10.1109\/CVPR46437.2021.01444"},{"key":"63_CR7","doi-asserted-by":"crossref","unstructured":"He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770\u2013778 (2016)","DOI":"10.1109\/CVPR.2016.90"},{"key":"63_CR8","unstructured":"Howard, A.G., et al.: MobileNets: efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861 (2017)"},{"key":"63_CR9","unstructured":"Hua, W., Zhou, Y., De Sa, C.M., Zhang, Z., Suh, G.E.: Channel gating neural networks. In: Advances in Neural Information Processing Systems, vol. 32 (2019)"},{"key":"63_CR10","doi-asserted-by":"crossref","unstructured":"Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: CVPR, pp. 4700\u20134708 (2017)","DOI":"10.1109\/CVPR.2017.243"},{"key":"63_CR11","unstructured":"Hubara, I., Courbariaux, M., Soudry, D., El-Yaniv, R., Bengio, Y.: Binarized neural networks. In: Advances in Neural Information Processing Systems, vol. 29 (2016)"},{"key":"63_CR12","unstructured":"Jang, E., Gu, S., Poole, B.: Categorical reparameterization with gumbel-softmax. arXiv preprint arXiv:1611.01144 (2016)"},{"key":"63_CR13","doi-asserted-by":"crossref","unstructured":"Kreiss, S., Bertoni, L., Alahi, A.: PifPaf: composite fields for human pose estimation. In: CVPR, pp. 11977\u201311986 (2019)","DOI":"10.1109\/CVPR.2019.01225"},{"issue":"7553","key":"63_CR14","doi-asserted-by":"publisher","first-page":"436","DOI":"10.1038\/nature14539","volume":"521","author":"Y LeCun","year":"2015","unstructured":"LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436\u2013444 (2015)","journal-title":"Nature"},{"key":"63_CR15","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"740","DOI":"10.1007\/978-3-319-10602-1_48","volume-title":"Computer Vision \u2013 ECCV 2014","author":"T-Y Lin","year":"2014","unstructured":"Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740\u2013755. Springer, Cham (2014). https:\/\/doi.org\/10.1007\/978-3-319-10602-1_48"},{"key":"63_CR16","unstructured":"Newell, A., Huang, Z., Deng, J.: Associative embedding: end-to-end learning for joint detection and grouping. arXiv preprint arXiv:1611.05424 (2016)"},{"key":"63_CR17","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"483","DOI":"10.1007\/978-3-319-46484-8_29","volume-title":"Computer Vision \u2013 ECCV 2016","author":"A Newell","year":"2016","unstructured":"Newell, A., Yang, K., Deng, J.: Stacked hourglass networks for human pose estimation. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 483\u2013499. Springer, Cham (2016). https:\/\/doi.org\/10.1007\/978-3-319-46484-8_29"},{"key":"63_CR18","doi-asserted-by":"crossref","unstructured":"Ren, M., Pokrovsky, A., Yang, B., Urtasun, R.: SBNet: sparse blocks network for fast inference. In: CVPR, pp. 8711\u20138720 (2018)","DOI":"10.1109\/CVPR.2018.00908"},{"key":"63_CR19","doi-asserted-by":"crossref","unstructured":"Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR, pp. 5693\u20135703 (2019)","DOI":"10.1109\/CVPR.2019.00584"},{"key":"63_CR20","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"3","DOI":"10.1007\/978-3-030-01246-5_1","volume-title":"Computer Vision \u2013 ECCV 2018","author":"A Veit","year":"2018","unstructured":"Veit, A., Belongie, S.: Convolutional networks with adaptive inference graphs. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11205, pp. 3\u201318. Springer, Cham (2018). https:\/\/doi.org\/10.1007\/978-3-030-01246-5_1"},{"key":"63_CR21","doi-asserted-by":"crossref","unstructured":"Verelst, T., Tuytelaars, T.: Dynamic convolutions: exploiting spatial sparsity for faster inference. In: CVPR, pp. 2320\u20132329 (2020)","DOI":"10.1109\/CVPR42600.2020.00239"},{"key":"63_CR22","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"3","DOI":"10.1007\/978-3-030-01234-2_1","volume-title":"Computer Vision \u2013 ECCV 2018","author":"S Woo","year":"2018","unstructured":"Woo, S., Park, J., Lee, J.-Y., Kweon, I.S.: CBAM: convolutional block attention module. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 3\u201319. Springer, Cham (2018). https:\/\/doi.org\/10.1007\/978-3-030-01234-2_1"},{"key":"63_CR23","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"531","DOI":"10.1007\/978-3-030-58452-8_31","volume-title":"Computer Vision \u2013 ECCV 2020","author":"Z Xie","year":"2020","unstructured":"Xie, Z., Zhang, Z., Zhu, X., Huang, G., Lin, S.: Spatially adaptive inference with stochastic feature sampling and interpolation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 531\u2013548. Springer, Cham (2020). https:\/\/doi.org\/10.1007\/978-3-030-58452-8_31"},{"key":"63_CR24","doi-asserted-by":"crossref","unstructured":"Zhang, X., Zhou, X., Lin, M., Sun, J.: ShuffleNet: an extremely efficient convolutional neural network for mobile devices. In: CVPR, pp. 6848\u20136856 (2018)","DOI":"10.1109\/CVPR.2018.00716"}],"container-title":["Lecture Notes in Computer Science","Artificial Neural Networks and Machine Learning \u2013 ICANN 2022"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-15937-4_63","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,9,6]],"date-time":"2022-09-06T08:27:46Z","timestamp":1662452866000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-15937-4_63"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022]]},"ISBN":["9783031159367","9783031159374"],"references-count":24,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-15937-4_63","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2022]]},"assertion":[{"value":"7 September 2022","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ICANN","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Artificial Neural Networks","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Bristol","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"United Kingdom","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2022","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"6 September 2022","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"9 September 2022","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"31","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"icann2022","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/e-nns.org\/icann2022\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"EasyChair","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"561","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"255","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"4","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"45% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"No","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}