iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://api.crossref.org/works/10.1007/978-3-031-11346-8_38
{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,12]],"date-time":"2024-09-12T19:35:32Z","timestamp":1726169732655},"publisher-location":"Cham","reference-count":20,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783031113451"},{"type":"electronic","value":"9783031113468"}],"license":[{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2022]]},"DOI":"10.1007\/978-3-031-11346-8_38","type":"book-chapter","created":{"date-parts":[[2022,7,23]],"date-time":"2022-07-23T03:33:48Z","timestamp":1658547228000},"page":"439-446","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":3,"title":["Datasets of\u00a0Wireless Capsule Endoscopy for\u00a0AI-Enabled Techniques"],"prefix":"10.1007","author":[{"given":"Palak","family":"Handa","sequence":"first","affiliation":[]},{"given":"Nidhi","family":"Goel","sequence":"additional","affiliation":[]},{"given":"S.","family":"Indu","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2022,7,24]]},"reference":[{"issue":"29","key":"38_CR1","doi-asserted-by":"publisher","first-page":"10024","DOI":"10.3748\/wjg.v20.i29.10024","volume":"20","author":"MK Goenka","year":"2014","unstructured":"Goenka, M.K., Majumder, S., Goenka, U.: Capsule endoscopy: present status and future expectation. World J. Gastroenterol. WJG 20(29), 10024 (2014)","journal-title":"World J. Gastroenterol. WJG"},{"key":"38_CR2","doi-asserted-by":"crossref","unstructured":"Wang, A., et al.: Wireless capsule endoscopy. Gastrointest. Endosc. 78(6), 805\u2013815 (2013)","DOI":"10.1016\/j.gie.2013.06.026"},{"key":"38_CR3","doi-asserted-by":"crossref","unstructured":"Atsawarungruangkit, A., et al.: Understanding deep learning in capsule endoscopy: can artificial intelligence enhance clinical practice?. Artif. Intell. Gastrointest. Endosc. 1(2), 33\u201343 (2020)","DOI":"10.37126\/aige.v1.i2.33"},{"key":"38_CR4","doi-asserted-by":"crossref","unstructured":"Smedsrud, P.H., et al.: Kvasir-Capsule, a video capsule endoscopy dataset. Sci. Data 8(1), 1\u201310 (2021)","DOI":"10.1038\/s41597-021-00920-z"},{"key":"38_CR5","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"553","DOI":"10.1007\/978-3-319-93000-8_63","volume-title":"Image Analysis and Recognition","author":"P Coelho","year":"2018","unstructured":"Coelho, P., Pereira, A., Leite, A., Salgado, M., Cunha, A.: A deep learning approach for red lesions detection in video capsule endoscopies. In: Campilho, A., Karray, F., ter Haar Romeny, B. (eds.) ICIAR 2018. LNCS, vol. 10882, pp. 553\u2013561. Springer, Cham (2018). https:\/\/doi.org\/10.1007\/978-3-319-93000-8_63"},{"key":"38_CR6","doi-asserted-by":"crossref","unstructured":"Deeba, F., Bui, F.M., Wahid, K.A.: Automated growcut for segmentation of endoscopic images. In: 2016 International Joint Conference on Neural Networks (IJCNN). IEEE (2016)","DOI":"10.1109\/IJCNN.2016.7727810"},{"key":"38_CR7","doi-asserted-by":"crossref","unstructured":"Ozyoruk, K.B., et al.: EndoSLAM dataset and an unsupervised monocular visual odometry and depth estimation approach for endoscopic videos. Med. Image Anal. 71, 102058 (2021)","DOI":"10.1016\/j.media.2021.102058"},{"key":"38_CR8","doi-asserted-by":"crossref","unstructured":"Koulaouzidis, A., et al.: KID project: an internet-based digital video atlas of capsule endoscopy for research purposes. Endosc. Int. Open 5(06), E477\u2013E483 (2017)","DOI":"10.1055\/s-0043-105488"},{"key":"38_CR9","doi-asserted-by":"crossref","unstructured":"Leenhardt, R., et al.: CAD-CAP: a 25,000-image database serving the development of artificial intelligence for capsule endoscopy. Endosc. Int. Open 8(03), E415\u2013E420 (2020)","DOI":"10.1055\/a-1035-9088"},{"issue":"5","key":"38_CR10","doi-asserted-by":"publisher","first-page":"877","DOI":"10.1016\/j.gie.2014.06.026","volume":"80","author":"DK Iakovidis","year":"2014","unstructured":"Iakovidis, D.K., Koulaouzidis, A.: Automatic lesion detection in capsule endoscopy based on color saliency: closer to an essential adjunct for reviewing software. Gastrointest. Endosc. 80(5), 877\u2013883 (2014)","journal-title":"Gastrointest. Endosc."},{"key":"38_CR11","doi-asserted-by":"crossref","unstructured":"Vall\u00e9e, R., et al.: CrohnIPI: an endoscopic image database for the evaluation of automatic Crohn\u2019s disease lesions recognition algorithms. In: Medical Imaging 2020: Biomedical Applications in Molecular, Structural, and Functional Imaging, vol. 11317. International Society for Optics and Photonics (2020)","DOI":"10.1117\/12.2543584"},{"key":"38_CR12","doi-asserted-by":"crossref","unstructured":"Nam, J.H., et al.: Development of a deep learning-based software for calculating cleansing score in small bowel capsule endoscopy. Sci. Rep. 11(1), 1\u20138 (2021)","DOI":"10.1038\/s41598-021-81686-7"},{"key":"38_CR13","doi-asserted-by":"crossref","unstructured":"Deeba, F., et al.: Performance assessment of a bleeding detection algorithm for endoscopic video based on classifier fusion method and exhaustive feature selection. Biomed. Sig. Process. Control 40, 415\u2013424 (2018)","DOI":"10.1016\/j.bspc.2017.10.011"},{"key":"38_CR14","doi-asserted-by":"publisher","DOI":"10.1016\/j.knosys.2021.106971","volume":"222","author":"L Lan","year":"2021","unstructured":"Lan, L., Ye, C.: Recurrent generative adversarial networks for unsupervised WCE video summarization. Knowl.-Based Syst. 222, 106971 (2021)","journal-title":"Knowl.-Based Syst."},{"key":"38_CR15","doi-asserted-by":"crossref","unstructured":"biKoh, J.E.W., et al.: Automated diagnosis of celiac disease using DWT and nonlinear features with video capsule endoscopy images. Future Gener. Comput. Syst. 90, 86\u201393 (2019)","DOI":"10.1016\/j.future.2018.07.044"},{"key":"38_CR16","doi-asserted-by":"crossref","unstructured":"Kundu, A.K., Fattah, S.A., Rizve, M.N.: An automatic bleeding frame and region detection scheme for wireless capsule endoscopy videos based on interplane intensity variation profile in normalized RGB color space. J. Healthc. Eng. 2018 (2018)","DOI":"10.1155\/2018\/9423062"},{"key":"38_CR17","doi-asserted-by":"crossref","unstructured":"Ghosh, T., Fattah, S.A., Wahid, K.A.: CHOBS: color histogram of block statistics for automatic bleeding detection in wireless capsule endoscopy video. IEEE J. Transl. Eng. Health Med. 6, 1\u201312 (2018)","DOI":"10.1109\/JTEHM.2017.2756034"},{"key":"38_CR18","doi-asserted-by":"crossref","unstructured":"Charfi, S., El Ansari, M.: Computer-aided diagnosis system for ulcer detection in wireless capsule endoscopy videos. In: 2017 International Conference on Advanced Technologies for Signal and Image Processing (ATSIP). IEEE (2017)","DOI":"10.1109\/ATSIP.2017.8075590"},{"key":"38_CR19","doi-asserted-by":"crossref","unstructured":"Muhammad, K., et al.: Vision-based personalized wireless capsule endoscopy for smart healthcare: taxonomy, literature review, opportunities and challenges. Future Gener. Comput. Syst. 113, 266\u2013280 (2020)","DOI":"10.1016\/j.future.2020.06.048"},{"key":"38_CR20","doi-asserted-by":"crossref","unstructured":"Alaskar, H., et al.: Application of convolutional neural networks for automated ulcer detection in wireless capsule endoscopy images. Sensors 19(6), 1265 (2019)","DOI":"10.3390\/s19061265"}],"container-title":["Communications in Computer and Information Science","Computer Vision and Image Processing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-11346-8_38","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,9,27]],"date-time":"2022-09-27T20:37:25Z","timestamp":1664311045000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-11346-8_38"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022]]},"ISBN":["9783031113451","9783031113468"],"references-count":20,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-11346-8_38","relation":{},"ISSN":["1865-0929","1865-0937"],"issn-type":[{"type":"print","value":"1865-0929"},{"type":"electronic","value":"1865-0937"}],"subject":[],"published":{"date-parts":[[2022]]},"assertion":[{"value":"24 July 2022","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"CVIP","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Computer Vision and Image Processing","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Rupnagar","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"India","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2021","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"3 December 2021","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"5 December 2021","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"6","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"cvip2021","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/iitrpr.cvip2021.com\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"CMT","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"260","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"77","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"20","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"30% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"4","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}