iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://api.crossref.org/works/10.1007/978-3-031-06555-2_28
{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,12]],"date-time":"2024-09-12T17:45:46Z","timestamp":1726163146933},"publisher-location":"Cham","reference-count":19,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783031065545"},{"type":"electronic","value":"9783031065552"}],"license":[{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2022]]},"DOI":"10.1007\/978-3-031-06555-2_28","type":"book-chapter","created":{"date-parts":[[2022,5,17]],"date-time":"2022-05-17T05:10:13Z","timestamp":1652764213000},"page":"414-428","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":3,"title":["Open Source Handwritten Text Recognition on\u00a0Medieval Manuscripts Using Mixed Models and\u00a0Document-Specific Finetuning"],"prefix":"10.1007","author":[{"given":"Christian","family":"Reul","sequence":"first","affiliation":[]},{"given":"Stefan","family":"Tomasek","sequence":"additional","affiliation":[]},{"given":"Florian","family":"Langhanki","sequence":"additional","affiliation":[]},{"given":"Uwe","family":"Springmann","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2022,5,18]]},"reference":[{"key":"28_CR1","doi-asserted-by":"publisher","unstructured":"Breuel, T.M., Ul-Hasan, A., Al-Azawi, M.A., Shafait, F.: High-performance OCR for printed English and Fraktur using LSTM networks. In: 12th International Conference on Document Analysis and Recognition (ICDAR), pp. 683\u2013687. IEEE (2013). https:\/\/doi.org\/10.1109\/ICDAR.2013.140","DOI":"10.1109\/ICDAR.2013.140"},{"key":"28_CR2","unstructured":"Diaz, D.H., Qin, S., Ingle, R., Fujii, Y., Bissacco, A.: Rethinking text line recognition models. arXiv preprint (2021). https:\/\/arxiv.org\/abs\/2104.07787"},{"key":"28_CR3","doi-asserted-by":"publisher","unstructured":"Eichenberger, N., Suwelack, H., Schr\u00f6er, A.: Faithful transcriptions. 027.7 J. Libr. Cult. (2021). https:\/\/doi.org\/10.21428\/1bfadeb6.d3bdbcd2","DOI":"10.21428\/1bfadeb6.d3bdbcd2"},{"key":"28_CR4","unstructured":"Hawk, B.W., Karaisl, A., White, N.: Modelling medieval hands: practical OCR for caroline minuscule. Digit. Humaniti. Q. 13(1) (2019). http:\/\/www.digitalhumanities.org\/dhq\/vol\/13\/1\/000412\/000412.html"},{"issue":"13","key":"28_CR5","doi-asserted-by":"publisher","first-page":"1","DOI":"10.5334\/johd.46","volume":"7","author":"T Hodel","year":"2021","unstructured":"Hodel, T., Schoch, D., Schneider, C., Purcell, J.: General models for handwritten text recognition: feasibility and state-of-the art. German kurrent as an example. J. Open Humanit. Data 7(13), 1\u201310 (2021). https:\/\/doi.org\/10.5334\/johd.46","journal-title":"J. Open Humanit. Data"},{"key":"28_CR6","doi-asserted-by":"publisher","unstructured":"Kahle, P., Colutto, S., Hackl, G., M\u00fchlberger, G.: Transkribus-a service platform for transcription, recognition and retrieval of historical documents. In: 14th IAPR International Conference on Document Analysis and Recognition (ICDAR), vol. 4, pp. 19\u201324. IEEE (2017). https:\/\/doi.org\/10.1109\/ICDAR.2017.307","DOI":"10.1109\/ICDAR.2017.307"},{"key":"28_CR7","unstructured":"Kang, L., Riba, P., Rusi\u00f1ol, M., Forn\u00e9s, A., Villegas, M.: Pay attention to what you read: non-recurrent handwritten text-line recognition. arXiv preprint (2020). arXiv:2005.13044, https:\/\/arxiv.org\/abs\/2005.13044"},{"key":"28_CR8","doi-asserted-by":"publisher","first-page":"142642","DOI":"10.1109\/ACCESS.2020.3012542","volume":"8","author":"J Memon","year":"2020","unstructured":"Memon, J., Sami, M., Khan, R.A., Uddin, M.: Handwritten optical character recognition (OCR): a comprehensive systematic literature review (SLR). IEEE Access 8, 142642\u2013142668 (2020). https:\/\/doi.org\/10.1109\/ACCESS.2020.3012542","journal-title":"IEEE Access"},{"key":"28_CR9","unstructured":"Michael, J., Weidemann, M., Labahn, R.: HTR engine based on NNs P3. Horizon 2020 Technical report (2018). https:\/\/readcoop.eu\/wp-content\/uploads\/2018\/12\/Del_D7_9.pdf"},{"key":"28_CR10","unstructured":"Mochol\u00ed Calvo, C., et al.: Development and experimentation of a deep learning system for convolutional and recurrent neural networks. Ph.D. thesis. Universitat Polit\u00e8cnica de Val\u00e8ncia (2018)"},{"key":"28_CR11","doi-asserted-by":"publisher","unstructured":"Pletschacher, S., Antonacopoulos, A.: The PAGE (page analysis and ground-truth elements) format framework. In: 20th International Conference on Pattern Recognition, pp. 257\u2013260. IEEE (2010). https:\/\/doi.org\/10.1109\/ICPR.2010.72","DOI":"10.1109\/ICPR.2010.72"},{"issue":"22","key":"28_CR12","doi-asserted-by":"publisher","first-page":"4853","DOI":"10.3390\/app9224853","volume":"9","author":"C Reul","year":"2019","unstructured":"Reul, C., et al.: OCR4all-an open-source tool providing a (semi-)automatic OCR workflow for historical printings. Appl. Sci. 9(22), 4853 (2019). https:\/\/doi.org\/10.3390\/app9224853","journal-title":"Appl. Sci."},{"key":"28_CR13","doi-asserted-by":"crossref","unstructured":"Reul, C., Springmann, U., Wick, C., Puppe, F.: Improving OCR accuracy on early printed books by combining pretraining, voting, and active learning. JLCL: Spec. Issue Autom. Text Layout Recognit. 33(1), 3\u201324 (2018). https:\/\/jlcl.org\/content\/2-allissues\/2-heft1-2018\/jlcl_2018-1_1.pdf","DOI":"10.21248\/jlcl.33.2018.216"},{"key":"28_CR14","doi-asserted-by":"publisher","unstructured":"Reul, C., Springmann, U., Wick, C., Puppe, F.: Improving OCR accuracy on early printed books by utilizing cross fold training and voting. In: 2018 13th IAPR International Workshop on Document Analysis Systems (DAS), pp. 423\u2013428. IEEE (2018). https:\/\/doi.org\/10.1109\/DAS.2018.30","DOI":"10.1109\/DAS.2018.30"},{"key":"28_CR15","doi-asserted-by":"publisher","unstructured":"Reul, C., Wick, C., Noeth, M., Wehner, M., Springmann, U.: Mixed model OCR training on historical Latin script for Out-of-the-box recognition and finetuning. In: The 6th International Workshop on Historical Document Imaging and Processing, pp. 7\u201312 (2021). https:\/\/doi.org\/10.1145\/3476887.3476910","DOI":"10.1145\/3476887.3476910"},{"key":"28_CR16","doi-asserted-by":"publisher","first-page":"122","DOI":"10.1016\/j.patcog.2019.05.025","volume":"94","author":"JA S\u00e1nchez","year":"2019","unstructured":"S\u00e1nchez, J.A., Romero, V., Toselli, A.H., Villegas, M., Vidal, E.: A set of benchmarks for handwritten text recognition on historical documents. Pattern Recognit. 94, 122\u2013134 (2019). https:\/\/doi.org\/10.1016\/j.patcog.2019.05.025","journal-title":"Pattern Recognit."},{"key":"28_CR17","unstructured":"Springmann, U., L\u00fcdeling, A.: OCR of historical printings with an application to building diachronic corpora: a case study using the RIDGES herbal corpus. Digit. Humanit. Q. 11(2) (2017), http:\/\/www.digitalhumanities.org\/dhq\/vol\/11\/2\/000288\/000288.html"},{"key":"28_CR18","doi-asserted-by":"publisher","unstructured":"St\u00f6kl Ben Ezra, D., Brown-DeVost, B., Jablonski, P., Lapin, H., Kiessling, B., Lolli, E.: BiblIA-a general model for medieval hebrew manuscripts and an open annotated dataset. In: The 6th International Workshop on Historical Document Imaging and Processing, pp. 61\u201366 (2021). https:\/\/doi.org\/10.1145\/3476887.3476896","DOI":"10.1145\/3476887.3476896"},{"key":"28_CR19","unstructured":"Wick, C., Reul, C., Puppe, F.: Calamari-a high-performance tensorflow-based deep learning package for optical character recognition. Digit. Humanit. Q. 14(2) (2020). http:\/\/www.digitalhumanities.org\/dhq\/vol\/14\/2\/000451\/000451.html"}],"container-title":["Lecture Notes in Computer Science","Document Analysis Systems"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-06555-2_28","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,3,12]],"date-time":"2024-03-12T12:06:57Z","timestamp":1710245217000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-06555-2_28"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022]]},"ISBN":["9783031065545","9783031065552"],"references-count":19,"URL":"http:\/\/dx.doi.org\/10.1007\/978-3-031-06555-2_28","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2022]]},"assertion":[{"value":"18 May 2022","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"DAS","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Workshop on Document Analysis Systems","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"La Rochelle","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"France","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2022","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"22 May 2022","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"25 May 2022","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"15","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"das2022","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/das2022.univ-lr.fr\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"easychair","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"94","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"52","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"16","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"55% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"2.85","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"No","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}