iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://api.crossref.org/works/10.1007/978-3-030-91702-9_18
{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,14]],"date-time":"2024-09-14T00:10:36Z","timestamp":1726272636516},"publisher-location":"Cham","reference-count":28,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030917012"},{"type":"electronic","value":"9783030917029"}],"license":[{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2021]]},"DOI":"10.1007\/978-3-030-91702-9_18","type":"book-chapter","created":{"date-parts":[[2021,11,27]],"date-time":"2021-11-27T20:02:46Z","timestamp":1638043366000},"page":"264-279","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["On the\u00a0Analysis of\u00a0CGP Mutation Operators When Inferring Gene Regulatory Networks Using ScRNA-Seq Time Series Data"],"prefix":"10.1007","author":[{"given":"Jos\u00e9 Eduardo H. da","family":"Silva","sequence":"first","affiliation":[]},{"given":"Heder S.","family":"Bernardino","sequence":"additional","affiliation":[]},{"given":"Itamar L.","family":"de Oliveira","sequence":"additional","affiliation":[]},{"given":"Alex B.","family":"Vieira","sequence":"additional","affiliation":[]},{"given":"Helio J. C.","family":"Barbosa","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2021,11,28]]},"reference":[{"key":"18_CR1","doi-asserted-by":"crossref","unstructured":"Aalto, A., Viitasaari, L., Ilmonen, P., Mombaerts, L., Gon\u00e7alves, J.: Gene regulatory network inference from sparsely sampled noisy data. Nat. Commun. 11(1), 1\u20139 (2020)","DOI":"10.1038\/s41467-020-17217-1"},{"key":"18_CR2","doi-asserted-by":"crossref","unstructured":"Banf, M., Rhee, S.Y.: Computational inference of gene regulatory networks: approaches, limitations and opportunities. Biochimica et Biophysica Acta (BBA) Gene Regul. Mech. 1860(1), 41\u201352 (2017)","DOI":"10.1016\/j.bbagrm.2016.09.003"},{"key":"18_CR3","doi-asserted-by":"crossref","unstructured":"Chan, T.E., Stumpf, M.P., Babtie, A.C.: Gene regulatory network inference from single-cell data using multivariate information measures. Cell Syst. 5(3), 251\u2013267 (2017)","DOI":"10.1016\/j.cels.2017.08.014"},{"key":"18_CR4","doi-asserted-by":"crossref","unstructured":"Chen, S., Mar, J.C.: Evaluating methods of inferring gene regulatory networks highlights their lack of performance for single cell gene expression data. BMC Bioinf. 19(1), 1\u201321 (2018)","DOI":"10.1186\/s12859-018-2217-z"},{"key":"18_CR5","doi-asserted-by":"crossref","unstructured":"Dolan, E.D., Mor\u00e9, J.J.: Benchmarking optimization software with performance profiles. Math. Programm. 91(2), 201\u2013213 (2002)","DOI":"10.1007\/s101070100263"},{"key":"18_CR6","unstructured":"Draelos, R.: Measuring performance: Auprc and average precision (2019). glassboxmedicine.com\/2019\/03\/02\/measuring-performance-auprc\/"},{"key":"18_CR7","doi-asserted-by":"crossref","unstructured":"Friedman, J.H.: Greedy function approximation: a gradient boosting machine. Ann. Statist., pp. 1189\u20131232 (2001)","DOI":"10.1214\/aos\/1013203451"},{"key":"18_CR8","doi-asserted-by":"crossref","unstructured":"Gebert, J., Radde, N., Weber, G.W.: Modeling gene regulatory networks with piecewise linear differential equations. Eur. J. Oper. Res. 181(3), 1148\u20131165 (2007)","DOI":"10.1016\/j.ejor.2005.11.044"},{"key":"18_CR9","doi-asserted-by":"publisher","unstructured":"Goldman, B.W., Punch, W.F.: Reducing wasted evaluations in cartesian genetic programming. In: Krawiec, K., et al. (eds.) EuroGP 2013. LNCS, vol. 7831, pp. 61\u201372. Springer, Heidelberg (2013). https:\/\/doi.org\/10.1007\/978-3-642-37207-0_6","DOI":"10.1007\/978-3-642-37207-0_6"},{"key":"18_CR10","doi-asserted-by":"crossref","unstructured":"Haghverdi, L., B\u00fcttner, M., Wolf, F.A., Buettner, F., Theis, F.J.: Diffusion pseudotime robustly reconstructs lineage branching. Nat. Methods 13(10), 845 (2016)","DOI":"10.1038\/nmeth.3971"},{"key":"18_CR11","doi-asserted-by":"crossref","unstructured":"Hodan, D., Mrazek, V., Vasicek, Z.: Semantically-oriented mutation operator in cartesian genetic programming for evolutionary circuit design. In: Proceedings of the 2020 Genetic and Evolutionary Computation Conference, pp. 940\u2013948 (2020)","DOI":"10.1145\/3377930.3390188"},{"issue":"9","key":"18_CR12","doi-asserted-by":"publisher","DOI":"10.1371\/journal.pone.0012776","volume":"5","author":"A Irrthum","year":"2010","unstructured":"Irrthum, A., Wehenkel, L., Geurts, P., et al.: Inferring regulatory networks from expression data using tree-based methods. PloS One 5(9), e12776 (2010)","journal-title":"PloS One"},{"key":"18_CR13","doi-asserted-by":"publisher","DOI":"10.7554\/eLife.51254","volume":"9","author":"CA Jackson","year":"2020","unstructured":"Jackson, C.A., Castro, D.M., Saldi, G.A., Bonneau, R., Gresham, D.: Gene regulatory network reconstruction using single-cell RNA sequencing of barcoded genotypes in diverse environments. Elife 9, e51254 (2020)","journal-title":"Elife"},{"key":"18_CR14","doi-asserted-by":"crossref","unstructured":"Liu, S., Trapnell, C.: Single-cell transcriptome sequencing: recent advances and remaining challenges. F1000Research 5 (2016)","DOI":"10.12688\/f1000research.7223.1"},{"key":"18_CR15","doi-asserted-by":"publisher","first-page":"113760","DOI":"10.1109\/ACCESS.2019.2935216","volume":"7","author":"B Ma","year":"2019","unstructured":"Ma, B., Jiao, X., Meng, F., Xu, F., Geng, Y., Gao, R., Wang, W., Sun, Y.: Identification of gene regulatory networks by integrating genetic programming with particle filtering. IEEE Access 7, 113760\u2013113770 (2019)","journal-title":"IEEE Access"},{"key":"18_CR16","doi-asserted-by":"crossref","unstructured":"McCall, M.N.: Estimation of gene regulatory networks. Postdoc J. Postdoc. Res. Postdoc. Affairs, 1(1), 60 (2013)","DOI":"10.14304\/SURYA.JPR.V1N1.7"},{"key":"18_CR17","doi-asserted-by":"crossref","unstructured":"Miller, J.F.: Cartesian genetic programming. CGP, pp. 17\u201334 (2011)","DOI":"10.1007\/978-3-642-17310-3_2"},{"key":"18_CR18","unstructured":"Miller, J.F., Thomson, P., Fogarty, T.: Designing electronic circuits using evolutionary algorithms. arithmetic circuits: A case study (1997)"},{"key":"18_CR19","doi-asserted-by":"crossref","unstructured":"Moerman, T., et al.: GRNBoost2 and Arboreto: efficient and scalable inference of gene regulatory networks. Bioinformatics 35(12), 2159\u20132161 (2019)","DOI":"10.1093\/bioinformatics\/bty916"},{"key":"18_CR20","doi-asserted-by":"crossref","unstructured":"Pratapa, A., Jalihal, A.P., Law, J.N., Bharadwaj, A., Murali, T.: Benchmarking algorithms for gene regulatory network inference from single-cell transcriptomic data. Nat. methods 17(2), 147\u2013154 (2020)","DOI":"10.1038\/s41592-019-0690-6"},{"key":"18_CR21","doi-asserted-by":"crossref","unstructured":"Qiu, X., Mao, Q., Tang, Y., Wang, L., Chawla, R., Pliner, H.A., Trapnell, C.: Reversed graph embedding resolves complex single-cell trajectories. Nat. Methods 14(10), 979 (2017)","DOI":"10.1038\/nmeth.4402"},{"key":"18_CR22","doi-asserted-by":"publisher","unstructured":"Huynh-Thu, V.A., Sanguinetti, G.: Gene regulatory network inference: an introductory survey. In: Sanguinetti, G., Huynh-Thu, V.A. (eds.) Gene Regulatory Networks. MMB, vol. 1883, pp. 1\u201323. Springer, New York (2019). https:\/\/doi.org\/10.1007\/978-1-4939-8882-2_1","DOI":"10.1007\/978-1-4939-8882-2_1"},{"key":"18_CR23","doi-asserted-by":"crossref","unstructured":"Setty, M., et al.: Wishbone identifies bifurcating developmental trajectories from single-cell data. Nat. Biotech. 34(6), 637\u2013645 (2016)","DOI":"10.1038\/nbt.3569"},{"key":"18_CR24","doi-asserted-by":"crossref","unstructured":"da Silva, J.E.H., et al.: Inferring gene regulatory network models from time-series data using metaheuristics. In: IEEE Congress on Evolutionary Computer (CEC), pp. 1\u20138. IEEE (2020)","DOI":"10.1109\/CEC48606.2020.9185572"},{"key":"18_CR25","doi-asserted-by":"crossref","unstructured":"da Silva, J.E.H., Bernardino, H.S., de Oliveira, I.L.: Inference of gene regulatory networks from single-cell RNA-sequencing data using cartesian genetic programming (under review). In: Bioinformatics, pp. 1\u20138. Oxford (2021)","DOI":"10.1109\/CEC60901.2024.10611826"},{"key":"18_CR26","doi-asserted-by":"publisher","unstructured":"Streichert, F., et al.: Comparing genetic programming and evolution strategies on inferring gene regulatory networks. In: Deb, K. (ed.) GECCO 2004. LNCS, vol. 3102, pp. 471\u2013480. Springer, Heidelberg (2004). https:\/\/doi.org\/10.1007\/978-3-540-24854-5_47","DOI":"10.1007\/978-3-540-24854-5_47"},{"key":"18_CR27","doi-asserted-by":"crossref","unstructured":"Trapnell, C., et al.: The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat. Biotechnol. 32(4), 381 (2014)","DOI":"10.1038\/nbt.2859"},{"key":"18_CR28","doi-asserted-by":"crossref","unstructured":"Wang, R.S., Saadatpour, A., Albert, R.: Boolean modeling in systems biology: an overview of methodology and applications. Phys. Biol. 9(5), 055001 (2012)","DOI":"10.1088\/1478-3975\/9\/5\/055001"}],"container-title":["Lecture Notes in Computer Science","Intelligent Systems"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-91702-9_18","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,9,13]],"date-time":"2024-09-13T04:34:30Z","timestamp":1726202070000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-030-91702-9_18"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021]]},"ISBN":["9783030917012","9783030917029"],"references-count":28,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-91702-9_18","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2021]]},"assertion":[{"value":"28 November 2021","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"BRACIS","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Brazilian Conference on Intelligent Systems","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2021","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"29 November 2021","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"3 December 2021","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"10","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"bracis2021","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/c4ai.inova.usp.br\/bracis\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Double-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"JEMS","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"192","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"77","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"40% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3.1","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Due to COVID-19, the conference was held as an online event.","order":10,"name":"additional_info_on_review_process","label":"Additional Info on Review Process","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}