iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://api.crossref.org/works/10.1007/978-3-030-89691-1_8
{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,12]],"date-time":"2024-09-12T12:53:21Z","timestamp":1726145601723},"publisher-location":"Cham","reference-count":23,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030896904"},{"type":"electronic","value":"9783030896911"}],"license":[{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2021]]},"DOI":"10.1007\/978-3-030-89691-1_8","type":"book-chapter","created":{"date-parts":[[2021,11,3]],"date-time":"2021-11-03T03:05:02Z","timestamp":1635908702000},"page":"69-78","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":1,"title":["Covariance Matrix Adaptation Evolution Strategy for Convolutional Neural Network in Text Classification"],"prefix":"10.1007","author":[{"ORCID":"http:\/\/orcid.org\/0000-0001-8263-0425","authenticated-orcid":false,"given":"Orlando Grabiel","family":"Toledano-L\u00f3pez","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-5551-690X","authenticated-orcid":false,"given":"Julio","family":"Madera","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-7601-4201","authenticated-orcid":false,"given":"H\u00e9ctor","family":"Gonz\u00e1lez","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-6776-9434","authenticated-orcid":false,"given":"Alfredo Sim\u00f3n","family":"Cuevas","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2021,11,4]]},"reference":[{"issue":"2","key":"8_CR1","doi-asserted-by":"publisher","first-page":"159","DOI":"10.1162\/106365601750190398","volume":"9","author":"N Hansen","year":"2001","unstructured":"Hansen, N., Ostermeier, A.: Completely derandomized self-adaptation in evolution strategies. Evol. Comput. 9(2), 159\u2013195 (2001)","journal-title":"Evol. Comput."},{"issue":"1","key":"8_CR2","doi-asserted-by":"publisher","first-page":"20","DOI":"10.1016\/j.ijresmar.2018.09.009","volume":"36","author":"J Hartmann","year":"2019","unstructured":"Hartmann, J., Huppertz, J., Schamp, C., Heitmann, M.: Comparing automated text classification methods. Int. J. Res. Mark. 36(1), 20\u201338 (2019)","journal-title":"Int. J. Res. Mark."},{"key":"8_CR3","doi-asserted-by":"publisher","first-page":"679","DOI":"10.1016\/j.procs.2018.05.069","volume":"132","author":"S Indolia","year":"2018","unstructured":"Indolia, S., Kumar, A., Mishra, S.P., Asopa, P.: Conceptual understanding of convolutional neural network- a deep learning approach. Proc. Comput. Sci. 132, 679\u2013688 (2018)","journal-title":"Proc. Comput. Sci."},{"issue":"3","key":"8_CR4","doi-asserted-by":"publisher","first-page":"462","DOI":"10.1214\/aoms\/1177729392","volume":"23","author":"J Kiefer","year":"1952","unstructured":"Kiefer, J., Wolfowitz, J.: Stochastic estimation of the maximum of a regression function. Ann. Math. Stat. 23(3), 462\u2013466 (1952)","journal-title":"Ann. Math. Stat."},{"key":"8_CR5","unstructured":"Kingma, D.P., Ba, J.L.: Adam: a method for stochastic optimization. In 3rd International Conference on Learning Representations, ICLR 2015 - Conference Track Proceedings, pp. 1\u201315 (2015)"},{"key":"8_CR6","doi-asserted-by":"crossref","unstructured":"Kowsari, K., Meimandi, K.J., Heidarysafa, M., Mendu, S., Barnes, L., Brown, D.: Text classification algorithms: a survey (2019)","DOI":"10.3390\/info10040150"},{"key":"8_CR7","doi-asserted-by":"publisher","DOI":"10.1007\/978-1-4615-1539-5","volume-title":"Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation","author":"P Larra\u00f1aga","year":"2002","unstructured":"Larra\u00f1aga, P., Lozano, J.A.: Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation, vol. 2. Springer, Heidelberg (2002). https:\/\/doi.org\/10.1007\/978-1-4615-1539-5"},{"issue":"13","key":"8_CR8","first-page":"2630","volume":"9","author":"LT Le","year":"2019","unstructured":"Le, L.T., Nguyen, H., Dou, J., Zhou, J.: A comparative study of PSO-ANN, GA-ANN, ICA-ANN, and ABC-ANN in estimating the heating load of buildings\u2019 energy efficiency for smart city planning. Appl. Sci. (Switzerland) 9(13), 2630 (2019)","journal-title":"Appl. Sci. (Switzerland)"},{"key":"8_CR9","doi-asserted-by":"publisher","first-page":"295","DOI":"10.1016\/j.ins.2020.10.021","volume":"548","author":"Y Liang","year":"2021","unstructured":"Liang, Y., et al.: Fusion of heterogeneous attention mechanisms in multi-view convolutional neural network for text classification. Inf. Sci. 548, 295\u2013312 (2021)","journal-title":"Inf. Sci."},{"key":"8_CR10","doi-asserted-by":"crossref","unstructured":"Luan, Y., Lin, S.: Research on text classification based on CNN and LSTM. In: Proceedings of 2019 IEEE International Conference on Artificial Intelligence and Computer Applications, ICAICA 2019, pp. 352\u2013355 (2019)","DOI":"10.1109\/ICAICA.2019.8873454"},{"key":"8_CR11","doi-asserted-by":"publisher","unstructured":"Madera, J., Dorronsoro, B.: Estimation of distribution algorithms. In: Alba, E., Mart\u00ed, R. (eds.) Metaheuristic Procedures for Training Neural Networks, 1 edn., pp. 87\u2013108. Springer, Boston (2006). https:\/\/doi.org\/10.1007\/0-387-33416-5_5. ISBN: 978-0-387-33415-8","DOI":"10.1007\/0-387-33416-5_5"},{"key":"8_CR12","unstructured":"Mikolov, T., Sutskever, I., Chen, K., Corrado, G., Dean, J.: Distributed representations of words and phrases and their compositionality. In: Advances in Neural Information Processing Systems, pp. 1\u20139 (2013)"},{"key":"8_CR13","doi-asserted-by":"crossref","unstructured":"Minaee, S., Kalchbrenner, N., Cambria, E., Nikzad, N., Chenaghlu, M., Gao, J.: Deep learning based text classification: a comprehensive review (2020)","DOI":"10.1145\/3439726"},{"issue":"06","key":"8_CR14","first-page":"404","volume":"7","author":"V Nair","year":"2018","unstructured":"Nair, V., Mohapatra, S.K., Malhotra, R.: A machine learning algorithm for product classification based on unstructured text description. Int. J. Eng. Res. Technol. 7(06), 404\u2013407 (2018)","journal-title":"Int. J. Eng. Res. Technol."},{"key":"8_CR15","doi-asserted-by":"publisher","first-page":"97","DOI":"10.1016\/j.engappai.2017.01.013","volume":"60","author":"VK Ojha","year":"2017","unstructured":"Ojha, V.K., Abraham, A., Sn\u00e1sel, V.: Metaheuristic design of feedforward neural networks\u202f: a review of two decades of research. Eng. Appl. Artif. Intell. 60, 97\u2013116 (2017)","journal-title":"Eng. Appl. Artif. Intell."},{"key":"8_CR16","doi-asserted-by":"crossref","unstructured":"Pennington, J., Socher, R., Manning, C.D.: GloVe: global vectors for word representation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1532\u20131543. Association for Computational Linguistics (2014)","DOI":"10.3115\/v1\/D14-1162"},{"key":"8_CR17","doi-asserted-by":"crossref","unstructured":"Raunak, V., Metze, F.: Effective dimensionality reduction for word embeddings. In: Proceedings of the 4th Workshop on Representation Learning for NLP (RepL4NLP-2019), , Florence, pp. 235\u2013243. Association for Computational Linguistics (2019)","DOI":"10.18653\/v1\/W19-4328"},{"key":"8_CR18","doi-asserted-by":"crossref","unstructured":"Reddy, T., Williams, R., Breazeal, C.: Text classification for AI education. In: Proceedings of the 52nd ACM Technical Symposium on Computer Science Education, SIGCSE 2021, pp. 1381. Association for Computing Machinery, New York (2021)","DOI":"10.1145\/3408877.3439689"},{"key":"8_CR19","doi-asserted-by":"publisher","first-page":"373","DOI":"10.1016\/j.patrec.2019.05.017","volume":"125","author":"J Rojas-Delgado","year":"2019","unstructured":"Rojas-Delgado, J., Trujillo-Ras\u00faa, R., Bello, R.: A continuation approach for training Artificial Neural Networks with meta-heuristics. Pattern Recogn. Lett. 125, 373\u2013380 (2019)","journal-title":"Pattern Recogn. Lett."},{"key":"8_CR20","doi-asserted-by":"crossref","unstructured":"Shen, H.: Towards a mathematical understanding of the difficulty in learning with feedforward neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 811\u2013820 (2018)","DOI":"10.1109\/CVPR.2018.00091"},{"key":"8_CR21","doi-asserted-by":"crossref","unstructured":"Suyan, W., Entong, S., Binyang, L., Jiangrui, W.: TextCNN-based text classification for E-government. In: International Conference on Information Science and Control Engineering, ICISCE 2019, pp. 929\u2013934 (2019)","DOI":"10.1109\/ICISCE48695.2019.00187"},{"key":"8_CR22","doi-asserted-by":"crossref","unstructured":"Wang, R., Li, Z., Cao, J., Chen, T., Wang, L.: Convolutional recurrent neural networks for text classification. In: Proceedings of the International Joint Conference on Neural Networks, vol. 2019-July, no. 2018, pp. 1\u20136 (2019)","DOI":"10.1109\/IJCNN.2019.8852406"},{"issue":"3","key":"8_CR23","doi-asserted-by":"publisher","first-page":"1309","DOI":"10.32604\/cmc.2020.010172","volume":"63","author":"H Wu","year":"2020","unstructured":"Wu, H., Liu, Y., Wang, J.: Review of text classification methods on deep learning. Comput. Mater. Continua 63(3), 1309\u20131321 (2020)","journal-title":"Comput. Mater. Continua"}],"container-title":["Lecture Notes in Computer Science","Progress in Artificial Intelligence and Pattern Recognition"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-89691-1_8","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,1,30]],"date-time":"2022-01-30T11:03:19Z","timestamp":1643540599000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-030-89691-1_8"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021]]},"ISBN":["9783030896904","9783030896911"],"references-count":23,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-89691-1_8","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2021]]},"assertion":[{"value":"4 November 2021","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"IWAIPR","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Workshop on Artificial Intelligence and Pattern Recognition","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Havana","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Cuba","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2021","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"5 October 2021","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"7 October 2021","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"7","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"iwaipr2021","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/uciencia.uci.cu\/en\/vii-international-workshop-artificial-intelligence-and-pattern-recognition","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Double-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Springer OCS","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"73","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"42","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"0","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"58% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}