iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://api.crossref.org/works/10.1007/978-3-030-89363-7_36
{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,12]],"date-time":"2024-09-12T12:45:55Z","timestamp":1726145155962},"publisher-location":"Cham","reference-count":26,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030893620"},{"type":"electronic","value":"9783030893637"}],"license":[{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2021]]},"DOI":"10.1007\/978-3-030-89363-7_36","type":"book-chapter","created":{"date-parts":[[2021,11,1]],"date-time":"2021-11-01T01:02:59Z","timestamp":1635728579000},"page":"473-486","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Knowledge Compensation Network with Divisible Feature Learning for Unsupervised Domain Adaptive Person Re-identification"],"prefix":"10.1007","author":[{"given":"Jiajing","family":"Hong","sequence":"first","affiliation":[]},{"given":"Yang","family":"Zhang","sequence":"additional","affiliation":[]},{"given":"Yuesheng","family":"Zhu","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2021,11,1]]},"reference":[{"key":"36_CR1","doi-asserted-by":"publisher","first-page":"53","DOI":"10.1016\/j.patcog.2019.05.028","volume":"94","author":"H Luo","year":"2019","unstructured":"Luo, H., Jiang, W., Zhang, X., Fan, X., Qian, J., Zhang, C.: AlignedReID++: dynamically matching local information for person re-identification. Pattern Recogn. 94, 53\u201361 (2019)","journal-title":"Pattern Recogn."},{"doi-asserted-by":"crossref","unstructured":"Qi, L., Wang, L., Huo, J., Zhou, L., Shi, Y., Gao, Y.: A novel unsupervised camera-aware domain adaptation framework for person re-identification. In: ICCV (2019)","key":"36_CR2","DOI":"10.1109\/ICCV.2019.00817"},{"doi-asserted-by":"crossref","unstructured":"Deng, W., Zheng, L., Ye, Q., Kang, G., Yang, Y., Jiao, J.: Image-image domain adaptation with preserved self-similarity and domain-dissimilarity for person re-identification. In: CVPR (2018)","key":"36_CR3","DOI":"10.1109\/CVPR.2018.00110"},{"doi-asserted-by":"crossref","unstructured":"Huang, Y., Wu, Q., Xu, J., Zhong, Y.: SBSGAN: suppression of inter-domain background shift for person re-identification. In: ICCV (2019)","key":"36_CR4","DOI":"10.1109\/ICCV.2019.00962"},{"doi-asserted-by":"crossref","unstructured":"Zhai, Y., et al.: Ad-cluster: augmented discriminative clustering for domain adaptive person re-identification. In: CVPR (2020)","key":"36_CR5","DOI":"10.1109\/CVPR42600.2020.00904"},{"doi-asserted-by":"crossref","unstructured":"Fu, Y., Wei, Y., Wang, G., Zhou, Y., Shi, H., Huang, T.: Self-similarity grouping: a simple unsupervised cross domain adaptation approach for person re-identification. In: ICCV (2019)","key":"36_CR6","DOI":"10.1109\/ICCV.2019.00621"},{"unstructured":"Ge, Y., Chen, D., Li, H.: Mutual mean-teaching: pseudo label refinery for unsupervised domain adaptation on person re-identification. In: ICLR (2020)","key":"36_CR7"},{"doi-asserted-by":"crossref","unstructured":"Wang, G., Lai, J., Liang, W., Wang, G.: Smoothing adversarial domain attack and P-memory reconsolidation for cross-domain person re-identification. In: CVPR (2020)","key":"36_CR8","DOI":"10.1109\/CVPR42600.2020.01058"},{"key":"36_CR9","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"526","DOI":"10.1007\/978-3-030-58621-8_31","volume-title":"Computer Vision \u2013 ECCV 2020","author":"F Zhao","year":"2020","unstructured":"Zhao, F., Liao, S., Xie, G.-S., Zhao, J., Zhang, K., Shao, L.: Unsupervised domain adaptation with noise resistible mutual-training for person re-identification. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12356, pp. 526\u2013544. Springer, Cham (2020). https:\/\/doi.org\/10.1007\/978-3-030-58621-8_31"},{"key":"36_CR10","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"87","DOI":"10.1007\/978-3-030-58536-5_6","volume-title":"Computer Vision \u2013 ECCV 2020","author":"Y Zou","year":"2020","unstructured":"Zou, Y., Yang, X., Yu, Z., Kumar, B.V.K.V., Kautz, J.: Joint disentangling and adaptation for cross-domain person re-identification. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12347, pp. 87\u2013104. Springer, Cham (2020). https:\/\/doi.org\/10.1007\/978-3-030-58536-5_6"},{"unstructured":"Ester, M., Kriegel, H., Sander, J., Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: KDD (1996)","key":"36_CR11"},{"doi-asserted-by":"crossref","unstructured":"Wei, L., Zhang, S., Gao, W., Tian, Q.: Person transfer GAN to bridge domain gap for person re-identification. In: CVPR (2018)","key":"36_CR12","DOI":"10.1109\/CVPR.2018.00016"},{"issue":"9","key":"36_CR13","doi-asserted-by":"publisher","first-page":"4001","DOI":"10.1007\/s00521-020-05566-3","volume":"33","author":"S Zhou","year":"2021","unstructured":"Zhou, S., Wang, Y., Zhang, F., Wu, J.: Cross-view similarity exploration for unsupervised cross-domain person re-identification. Neural Comput. Appl. 33(9), 4001\u20134011 (2021). https:\/\/doi.org\/10.1007\/s00521-020-05566-3","journal-title":"Neural Comput. Appl."},{"key":"36_CR14","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"643","DOI":"10.1007\/978-3-030-58598-3_38","volume-title":"Computer Vision \u2013 ECCV 2020","author":"G Chen","year":"2020","unstructured":"Chen, G., Lu, Y., Lu, J., Zhou, J.: Deep credible metric learning for unsupervised domain adaptation person re-identification. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12353, pp. 643\u2013659. Springer, Cham (2020). https:\/\/doi.org\/10.1007\/978-3-030-58598-3_38"},{"doi-asserted-by":"crossref","unstructured":"Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: ICCV (2017)","key":"36_CR15","DOI":"10.1109\/ICCV.2017.244"},{"doi-asserted-by":"crossref","unstructured":"Zhong, Z., Zheng, L., Zheng, Z., Li, S., Yang, Y.: Camera style adaptation for person re-identification. In: CVPR (2018)","key":"36_CR16","DOI":"10.1109\/CVPR.2018.00541"},{"doi-asserted-by":"crossref","unstructured":"He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR (2016)","key":"36_CR17","DOI":"10.1109\/CVPR.2016.90"},{"doi-asserted-by":"crossref","unstructured":"Deng, J., Dong, W., Socher, R., Li, L., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: CVPR (2009)","key":"36_CR18","DOI":"10.1109\/CVPR.2009.5206848"},{"doi-asserted-by":"crossref","unstructured":"Szegedy, C., Vanhoucke, V., Loffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: CVPR (2016)","key":"36_CR19","DOI":"10.1109\/CVPR.2016.308"},{"doi-asserted-by":"crossref","unstructured":"Zheng, L., Shen, L., Tian, L., Wang, S., Wang, J., Tian, Q.: Scalable person re-identification: a benchmark. In: ICCV (2015)","key":"36_CR20","DOI":"10.1109\/ICCV.2015.133"},{"key":"36_CR21","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"17","DOI":"10.1007\/978-3-319-48881-3_2","volume-title":"Computer Vision \u2013 ECCV 2016 Workshops","author":"E Ristani","year":"2016","unstructured":"Ristani, E., Solera, F., Zou, R., Cucchiara, R., Tomasi, C.: Performance measures and a data set for multi-target, multi-camera tracking. In: Hua, G., J\u00e9gou, H. (eds.) ECCV 2016. LNCS, vol. 9914, pp. 17\u201335. Springer, Cham (2016). https:\/\/doi.org\/10.1007\/978-3-319-48881-3_2"},{"doi-asserted-by":"crossref","unstructured":"Zhong, Z., Zheng, L., Luo, Z., Li, S., Yang, Y.: Invariance matters: Exemplar memory for domain adaptive person re-identification. In: CVPR (2019)","key":"36_CR22","DOI":"10.1109\/CVPR.2019.00069"},{"doi-asserted-by":"crossref","unstructured":"Yu, H., Zheng, W., Wu, A., Guo, X., Gong, S., Lai, J.: Unsupervised person re-identification by soft multilabel learning. In: CVPR (2019)","key":"36_CR23","DOI":"10.1109\/CVPR.2019.00225"},{"doi-asserted-by":"crossref","unstructured":"Zhang, X., Cao, J., Shen, C., You, M.: Self-training with progressive augmentation for unsupervised cross-domain person re-identification. In: ICCV (2019)","key":"36_CR24","DOI":"10.1109\/ICCV.2019.00831"},{"doi-asserted-by":"crossref","unstructured":"Wang, J., Zhu, X., Gong, S., Li, W.: Transferable joint attribute-identity deep learning for unsupervised person re-identification. In: CVPR (2018)","key":"36_CR25","DOI":"10.1109\/CVPR.2018.00242"},{"key":"36_CR26","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"483","DOI":"10.1007\/978-3-030-58586-0_29","volume-title":"Computer Vision \u2013 ECCV 2020","author":"J Li","year":"2020","unstructured":"Li, J., Zhang, S.: Joint visual and temporal consistency for unsupervised domain adaptive person re-identification. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12369, pp. 483\u2013499. Springer, Cham (2020). https:\/\/doi.org\/10.1007\/978-3-030-58586-0_29"}],"container-title":["Lecture Notes in Computer Science","PRICAI 2021: Trends in Artificial Intelligence"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-89363-7_36","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2021,11,1]],"date-time":"2021-11-01T01:21:41Z","timestamp":1635729701000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-030-89363-7_36"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021]]},"ISBN":["9783030893620","9783030893637"],"references-count":26,"URL":"http:\/\/dx.doi.org\/10.1007\/978-3-030-89363-7_36","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2021]]},"assertion":[{"value":"1 November 2021","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"PRICAI","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Pacific Rim International Conference on Artificial Intelligence","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Hanoi","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Vietnam","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2021","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"8 November 2021","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"12 November 2021","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"18","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"pricai2021","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/www.pricai.org\/2021","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Double-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"EasyChair","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"382","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"93","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"28","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"24% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"5","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}