iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://api.crossref.org/works/10.1007/978-3-030-87869-6_64
{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,12]],"date-time":"2024-09-12T10:12:10Z","timestamp":1726135930746},"publisher-location":"Cham","reference-count":25,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030878689"},{"type":"electronic","value":"9783030878696"}],"license":[{"start":{"date-parts":[[2021,9,23]],"date-time":"2021-09-23T00:00:00Z","timestamp":1632355200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2021,9,23]],"date-time":"2021-09-23T00:00:00Z","timestamp":1632355200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2022]]},"DOI":"10.1007\/978-3-030-87869-6_64","type":"book-chapter","created":{"date-parts":[[2021,9,22]],"date-time":"2021-09-22T07:10:31Z","timestamp":1632294631000},"page":"675-684","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["An Extensive Comparative Between Univariate and Multivariate Deep Learning Models in Day-Ahead Electricity Price Forecasting"],"prefix":"10.1007","author":[{"given":"Bel\u00e9n","family":"Vega-M\u00e1rquez","sequence":"first","affiliation":[]},{"given":"Javier","family":"Sol\u00ed\u00ads-Garc\u00ed\u00ada","sequence":"additional","affiliation":[]},{"given":"Isabel A.","family":"Nepomuceno-Chamorro","sequence":"additional","affiliation":[]},{"given":"Cristina","family":"Rubio-Escudero","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2021,9,23]]},"reference":[{"key":"64_CR1","doi-asserted-by":"crossref","unstructured":"Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1\u20136. IEEE (2017)","DOI":"10.1109\/ICEngTechnol.2017.8308186"},{"key":"64_CR2","doi-asserted-by":"crossref","unstructured":"Atef, S., Eltawil, A.B.: A comparative study using deep learning and support vector regression for electricity price forecasting in smart grids. In: 2019 IEEE 6th International Conference on Industrial Engineering and Applications (ICIEA), pp. 603\u2013607. IEEE (2019)","DOI":"10.1109\/IEA.2019.8715213"},{"issue":"10","key":"64_CR3","doi-asserted-by":"publisher","first-page":"1924","DOI":"10.1016\/j.epsr.2011.06.002","volume":"81","author":"A Cruz","year":"2011","unstructured":"Cruz, A., Mu\u00f1oz, A., Zamora, J.L., Esp\u00ednola, R.: The effect of wind generation and weekday on Spanish electricity spot price forecasting. Electric Power Syst. Res. 81(10), 1924\u20131935 (2011)","journal-title":"Electric Power Syst. Res."},{"key":"64_CR4","unstructured":"Red El\u00e9ctrica de Espa\u00f1a, S.A.U.R.: esios: Sistema de informaci\u00f3n del operador del sistema (2020). https:\/\/www.esios.ree.es"},{"issue":"14\u201315","key":"64_CR5","doi-asserted-by":"publisher","first-page":"2627","DOI":"10.1016\/S1352-2310(97)00447-0","volume":"32","author":"MW Gardner","year":"1998","unstructured":"Gardner, M.W., Dorling, S.: Artificial neural networks (the multilayer perceptron)-a review of applications in the atmospheric sciences. Atmos. Environ. 32(14\u201315), 2627\u20132636 (1998)","journal-title":"Atmos. Environ."},{"issue":"11","key":"64_CR6","doi-asserted-by":"publisher","first-page":"1120","DOI":"10.1049\/iet-gtd.2014.0655","volume":"9","author":"C Gonz\u00e1lez","year":"2015","unstructured":"Gonz\u00e1lez, C., Mira-McWilliams, J., Ju\u00e1rez, I.: Important variable assessment and electricity price forecasting based on regression tree models: classification and regression trees, bagging and random forests. IET Generation, Transmission Distribution 9(11), 1120\u20131128 (2015)","journal-title":"IET Generation, Transmission Distribution"},{"key":"64_CR7","doi-asserted-by":"publisher","first-page":"1176","DOI":"10.1016\/j.egyr.2020.11.057","volume":"6","author":"H He","year":"2020","unstructured":"He, H., Lu, N., Jiang, Y., Chen, B., Jiao, R.: End-to-end probabilistic forecasting of electricity price via convolutional neural network and label distribution learning. Energy Rep. 6, 1176\u20131183 (2020)","journal-title":"Energy Rep."},{"issue":"8","key":"64_CR8","doi-asserted-by":"publisher","first-page":"1735","DOI":"10.1162\/neco.1997.9.8.1735","volume":"9","author":"S Hochreiter","year":"1997","unstructured":"Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735\u20131780 (1997)","journal-title":"Neural Comput."},{"issue":"2","key":"64_CR9","doi-asserted-by":"publisher","first-page":"2511","DOI":"10.1002\/er.5945","volume":"45","author":"CJ Huang","year":"2021","unstructured":"Huang, C.J., Shen, Y., Chen, Y.H., Chen, H.C.: A novel hybrid deep neural network model for short-term electricity price forecasting. Int. J. Energy Res. 45(2), 2511\u20132532 (2021)","journal-title":"Int. J. Energy Res."},{"issue":"4","key":"64_CR10","doi-asserted-by":"publisher","first-page":"2369","DOI":"10.1109\/TII.2019.2933009","volume":"16","author":"H Jahangir","year":"2019","unstructured":"Jahangir, H., et al.: A novel electricity price forecasting approach based on dimension reduction strategy and rough artificial neural networks. IEEE Trans. Industr. Inf. 16(4), 2369\u20132381 (2019)","journal-title":"IEEE Trans. Industr. Inf."},{"issue":"4","key":"64_CR11","doi-asserted-by":"publisher","first-page":"2369","DOI":"10.1109\/TII.2019.2933009","volume":"16","author":"H Jahangir","year":"2020","unstructured":"Jahangir, H., et al.: A novel electricity price forecasting approach based on dimension reduction strategy and rough artificial neural networks. IEEE Trans. Industr. Inf. 16(4), 2369\u20132381 (2020). https:\/\/doi.org\/10.1109\/TII.2019.2933009","journal-title":"IEEE Trans. Industr. Inf."},{"key":"64_CR12","doi-asserted-by":"crossref","unstructured":"Lara-Ben\u0131tez, P., Carranza-Garc\u0131a, M., Riquelme, J.C.: An experimental review on deep learning architectures for time series forecasting (2020)","DOI":"10.1142\/S0129065721300011"},{"key":"64_CR13","unstructured":"Oord, A.v.d., Dieleman, S., Zen, H., Simonyan, K., Vinyals, O., Graves, A., Kalchbrenner, N., Senior, A., Kavukcuoglu, K.: Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499 (2016)"},{"key":"64_CR14","unstructured":"Pa\u00eds, E.: La cnmc multa a endesa y naturgy con 25 millones por alterar los precios de la electricidad (2019)"},{"key":"64_CR15","unstructured":"Segal, M.R.: Machine learning benchmarks and random forest regression (2004)"},{"key":"64_CR16","doi-asserted-by":"publisher","unstructured":"Shen, G., Tan, Q., Zhang, H., Zeng, P., Xu, J.: Deep learning with gated recurrent unit networks for financial sequence predictions. Procedia Comput. Sci. 131, 895\u2013903 (2018). https:\/\/doi.org\/10.1016\/j.procs.2018.04.298. https:\/\/www.sciencedirect.com\/science\/article\/pii\/S1877050918306781, recent Advancement in Information and Communication Technology","DOI":"10.1016\/j.procs.2018.04.298"},{"key":"64_CR17","unstructured":"Torgo, L.: Functional models for regression tree leaves. In: ICML, vol. 97, pp. 385\u2013393. Citeseer (1997)"},{"issue":"1","key":"64_CR18","doi-asserted-by":"publisher","first-page":"3","DOI":"10.1089\/big.2020.0159","volume":"9","author":"JF Torres","year":"2021","unstructured":"Torres, J.F., Hadjout, D., Sebaa, A., Mart\u00ednez-\u00c1lvarez, F., Troncoso, A.: Deep learning for time series forecasting: a survey. Big Data 9(1), 3\u201321 (2021)","journal-title":"Big Data"},{"issue":"2","key":"64_CR19","doi-asserted-by":"publisher","first-page":"1203","DOI":"10.1109\/TPWRS.2018.2870041","volume":"34","author":"JF Toubeau","year":"2019","unstructured":"Toubeau, J.F., Bottieau, J., Vall\u00e9e, F., De Gr\u00e8ve, Z.: Deep learning-based multivariate probabilistic forecasting for short-term scheduling in power markets. IEEE Trans. Power Syst. 34(2), 1203\u20131215 (2019). https:\/\/doi.org\/10.1109\/TPWRS.2018.2870041","journal-title":"IEEE Trans. Power Syst."},{"key":"64_CR20","unstructured":"Vega, B., Sol\u00eds, J.: Multivariate time series forecasting with deep learning (2021). https:\/\/github.com\/javiersgjavi\/electric-multivariate"},{"key":"64_CR21","doi-asserted-by":"publisher","first-page":"529","DOI":"10.1016\/j.ijepes.2018.08.039","volume":"105","author":"F Wang","year":"2019","unstructured":"Wang, F., et al.: Daily pattern prediction based classification modeling approach for day-ahead electricity price forecasting. Int. J. Electr. Power Energy Syst. 105, 529\u2013540 (2019)","journal-title":"Int. J. Electr. Power Energy Syst."},{"key":"64_CR22","doi-asserted-by":"crossref","unstructured":"Zhang, J., Tan, Z., Wei, Y.: An adaptive hybrid model for short term electricity price forecasting. Appl. Energy 258, 114087 (2020)","DOI":"10.1016\/j.apenergy.2019.114087"},{"key":"64_CR23","doi-asserted-by":"publisher","first-page":"143423","DOI":"10.1109\/ACCESS.2020.3014241","volume":"8","author":"R Zhang","year":"2020","unstructured":"Zhang, R., Li, G., Ma, Z.: A deep learning based hybrid framework for day-ahead electricity price forecasting. IEEE Access 8, 143423\u2013143436 (2020)","journal-title":"IEEE Access"},{"key":"64_CR24","doi-asserted-by":"publisher","first-page":"899","DOI":"10.1016\/j.eneco.2019.05.026","volume":"81","author":"X Zhang","year":"2019","unstructured":"Zhang, X., Wang, J., Gao, Y.: A hybrid short-term electricity price forecasting framework: Cuckoo search-based feature selection with singular spectrum analysis and svm. Energy Econ. 81, 899\u2013913 (2019)","journal-title":"Energy Econ."},{"key":"64_CR25","doi-asserted-by":"publisher","first-page":"108161","DOI":"10.1109\/ACCESS.2019.2932999","volume":"7","author":"S Zhou","year":"2019","unstructured":"Zhou, S., Zhou, L., Mao, M., Tai, H.M., Wan, Y.: An optimized heterogeneous structure lstm network for electricity price forecasting. IEEE Access 7, 108161\u2013108173 (2019)","journal-title":"IEEE Access"}],"container-title":["Advances in Intelligent Systems and Computing","16th International Conference on Soft Computing Models in Industrial and Environmental Applications (SOCO 2021)"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-87869-6_64","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2021,9,22]],"date-time":"2021-09-22T07:27:45Z","timestamp":1632295665000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-030-87869-6_64"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,9,23]]},"ISBN":["9783030878689","9783030878696"],"references-count":25,"URL":"http:\/\/dx.doi.org\/10.1007\/978-3-030-87869-6_64","relation":{},"ISSN":["2194-5357","2194-5365"],"issn-type":[{"type":"print","value":"2194-5357"},{"type":"electronic","value":"2194-5365"}],"subject":[],"published":{"date-parts":[[2021,9,23]]},"assertion":[{"value":"23 September 2021","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"SOCO","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Workshop on Soft Computing Models in Industrial and Environmental Applications","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Bilbao","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Spain","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2021","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"22 September 2021","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"24 September 2021","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"socomoin2021","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/2021.sococonference.eu\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}