{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,12]],"date-time":"2024-09-12T09:20:36Z","timestamp":1726132836257},"publisher-location":"Cham","reference-count":30,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030845216"},{"type":"electronic","value":"9783030845223"}],"license":[{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2021]]},"DOI":"10.1007\/978-3-030-84522-3_43","type":"book-chapter","created":{"date-parts":[[2021,8,8]],"date-time":"2021-08-08T19:04:24Z","timestamp":1628449464000},"page":"526-534","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Plant Leaf Recognition Network Based on Fine-Grained Visual Classification"],"prefix":"10.1007","author":[{"given":"Wenhui","family":"Liu","sequence":"first","affiliation":[]},{"given":"Changan","family":"Yuan","sequence":"additional","affiliation":[]},{"given":"Xiao","family":"Qin","sequence":"additional","affiliation":[]},{"given":"Hongjie","family":"Wu","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2021,8,9]]},"reference":[{"key":"43_CR1","doi-asserted-by":"crossref","unstructured":"Du, R., Chang, D., Bhunia, A.K., et al.: Fine-grained visual classification via progressive multi-granularity training of jigsaw patches (2020)","DOI":"10.1007\/978-3-030-58565-5_10"},{"key":"43_CR2","unstructured":"Technicolor, T., Related, S., Technicolor, T., et al.: ImageNet classification with deep convolutional neural networks [50]"},{"issue":"3","key":"43_CR3","doi-asserted-by":"publisher","first-page":"603","DOI":"10.1016\/j.patcog.2009.08.002","volume":"43","author":"XF Wang","year":"2010","unstructured":"Wang, X.F., Huang, D.S., Xu, H.: An efficient local Chan-Vese model for image segmentation. Pattern Recogn. 43(3), 603\u2013618 (2010)","journal-title":"Pattern Recogn."},{"key":"43_CR4","doi-asserted-by":"crossref","unstructured":"Berg, T., Belhumeur, P.N.: POOF: part-based one-vs.-one features for fine-grained categorization, face verification, and attribute estimation. In: Computer Vision and Pattern Recognition. IEEE (2013)","DOI":"10.1109\/CVPR.2013.128"},{"key":"43_CR5","doi-asserted-by":"crossref","unstructured":"Luo, W., Yang, X., Mo, X., et al.: Cross-X learning for fine-grained visual categorization (2019)","DOI":"10.1109\/ICCV.2019.00833"},{"key":"43_CR6","doi-asserted-by":"crossref","unstructured":"Wu, Y., Zhang, K., Wu, D., et al.: Person re-identification by multi-scale feature representation learning with random batch feature mask. IEEE Trans. Cogn. Dev. Syst. (2020)","DOI":"10.1109\/TCDS.2020.3003674"},{"key":"43_CR7","doi-asserted-by":"crossref","unstructured":"Li, A.X., Zhang, K.X., Wang, L.W.: Zero-shot fine-grained classification by deep feature learning with semantics. Int. J. Autom. Comput. (2019)","DOI":"10.1007\/s11633-019-1177-8"},{"key":"43_CR8","doi-asserted-by":"crossref","unstructured":"Huang, G., Liu, Z., et al.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, vol. 1. no. 2 (2017)","DOI":"10.1109\/CVPR.2017.243"},{"key":"43_CR9","doi-asserted-by":"crossref","unstructured":"Chang, D., Ding, Y., Xie, J., et al.: The devil is in the channels: mutual-channel loss for fine-grained image classification. IEEE Trans. Image Process. (99), 1 (2020)","DOI":"10.1109\/TIP.2020.2973812"},{"issue":"12","key":"43_CR10","doi-asserted-by":"publisher","first-page":"3813","DOI":"10.1016\/j.patcog.2008.05.027","volume":"41","author":"B Li","year":"2008","unstructured":"Li, B., Huang, D.S.: Locally linear discriminant embedding: an efficient method for face recognition. Pattern Recogn. 41(12), 3813\u20133821 (2008)","journal-title":"Pattern Recogn."},{"key":"43_CR11","unstructured":"Huang, D.S.: Systematic theory of neural networks for pattern recognition. Publishing House of Electronic Industry of China (1996)"},{"issue":"12","key":"43_CR12","doi-asserted-by":"publisher","first-page":"2099","DOI":"10.1109\/TNN.2008.2004370","volume":"19","author":"DS Huang","year":"2008","unstructured":"Huang, D.S., Du, J.-X.: A constructive hybrid structure optimization methodology for radial basis probabilistic neural networks. IEEE Trans. Neural Netw. 19(12), 2099\u20132115 (2008)","journal-title":"IEEE Trans. Neural Netw."},{"key":"43_CR13","unstructured":"Wei, C., Xie, L., Ren, X., et al.: Iterative reorganization with weak spatial constraints: solving arbitrary jigsaw puzzles for unsupervised representation learning. In: IEEE"},{"issue":"5786","key":"43_CR14","doi-asserted-by":"publisher","first-page":"504","DOI":"10.1126\/science.1127647","volume":"313","author":"GE Hinton","year":"2006","unstructured":"Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural network. Science 313(5786), 504\u2013507 (2006)","journal-title":"Science"},{"issue":"5","key":"43_CR15","doi-asserted-by":"publisher","first-page":"1195","DOI":"10.1109\/72.623220","volume":"8","author":"Y Won","year":"1997","unstructured":"Won, Y., Gader, P.D., Coffield, P.C.: Morphological shared-weight networks with applications to automatic target recognition. IEEE Trans. Neural Netw. 8(5), 1195\u20131203 (1997)","journal-title":"IEEE Trans. Neural Netw."},{"key":"43_CR16","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"32","DOI":"10.1007\/978-3-319-10599-4_3","volume-title":"Computer Vision \u2013 ECCV 2014","author":"K Son","year":"2014","unstructured":"Son, K., Hays, J., Cooper, D.B.: Solving square jigsaw puzzles with loop constraints. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8694, pp. 32\u201346. Springer, Cham (2014). https:\/\/doi.org\/10.1007\/978-3-319-10599-4_3"},{"key":"43_CR17","unstructured":"Bai, X., Yang, M., Huang, T., Dou, Z., Yu, R., Xu, Y.: Deep-person: learning discriminative deep features for person re-identification. arXiv: Comput. Vis. Pattern Recogn. (2017)"},{"key":"43_CR18","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"387","DOI":"10.1007\/3-540-36181-2_39","volume-title":"Biologically Motivated Computer Vision","author":"T Serre","year":"2002","unstructured":"Serre, T., Riesenhuber, M., Louie, J., Poggio, T.: On the role of object-specific features for real world object recognition in biological vision. In: B\u00fclthoff, H.H., Wallraven, C., Lee, S.-W., Poggio, T.A. (eds.) BMCV 2002. LNCS, vol. 2525, pp. 387\u2013397. Springer, Heidelberg (2002). https:\/\/doi.org\/10.1007\/3-540-36181-2_39"},{"key":"43_CR19","doi-asserted-by":"crossref","unstructured":"Huang, D.S.: Radial basis probabilistic neural networks: model and application. Int. J. Pattern Recognit. Artif. Intell. 13(7), 1083\u20131101 (1999)","DOI":"10.1142\/S0218001499000604"},{"issue":"11","key":"43_CR20","doi-asserted-by":"publisher","first-page":"1515","DOI":"10.1109\/TKDE.2009.21","volume":"21","author":"X-F Wang","year":"2009","unstructured":"Wang, X.-F., Huang, D.S.: A novel density-based clustering framework by using level set method. IEEE Trans. Knowl. Data Eng. 21(11), 1515\u20131531 (2009)","journal-title":"IEEE Trans. Knowl. Data Eng."},{"issue":"13-15","key":"43_CR21","doi-asserted-by":"publisher","first-page":"1782","DOI":"10.1016\/j.neucom.2005.11.004","volume":"69","author":"L Shang","year":"2006","unstructured":"Shang, L., Huang, D.S., Du, J.-X., Zheng, C.-H.: Palmprint recognition using fast ICA algorithm and radial basis probabilistic neural network. Neurocomputing 69(13\u201315), 1782\u20131786 (2006)","journal-title":"Neurocomputing"},{"key":"43_CR22","doi-asserted-by":"crossref","unstructured":"Xiao, T., Li, S., Wang, B., Lin, L., Wang, X.: Joint detection and identification feature learning for person search. Comput. Vis. Pattern Recogn, 3376\u20133385 (2017)","DOI":"10.1109\/CVPR.2017.360"},{"key":"43_CR23","doi-asserted-by":"crossref","unstructured":"Wu, D., Zheng, S., Yuan, C., Huang, D.: A deep model with combined losses for person re-identification. Cogn. Syst. Res. (2018)","DOI":"10.1016\/j.cogsys.2018.04.003"},{"issue":"12","key":"43_CR24","doi-asserted-by":"publisher","first-page":"1351","DOI":"10.1016\/j.patrec.2004.05.008","volume":"25","author":"Z-Q Zhao","year":"2004","unstructured":"Zhao, Z.-Q., Huang, D.S., Sun, B.-Y.: Human face recognition based on multiple features using neural networks committee. Pattern Recogn. Lett. 25(12), 1351\u20131358 (2004)","journal-title":"Pattern Recogn. Lett."},{"key":"43_CR25","unstructured":"Yin, C., et al.: Kernel pooling for convolutional neural networks. In: IEEE Conference on Computer Vision & Pattern Recognition IEEE (2017)"},{"key":"43_CR26","doi-asserted-by":"crossref","unstructured":"He, K., et al.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2016)","DOI":"10.1109\/CVPR.2016.90"},{"key":"43_CR27","doi-asserted-by":"crossref","unstructured":"Huang, D.S., Zhao, W.-B.: Determining the centers of radial basis probabilistic neural networks by recursive orthogonal least square algorithms. Appl. Math. Comput. 162(1), 461\u2013473 (2005)","DOI":"10.1016\/j.amc.2003.12.105"},{"issue":"6","key":"43_CR28","doi-asserted-by":"publisher","first-page":"945","DOI":"10.1142\/S0218001499000525","volume":"13","author":"DS Huang","year":"1999","unstructured":"Huang, D.S.: Application of generalized radial basis function networks to recognition of radar targets. Int. J. Pattern Recognit. Artif. Intell. 13(6), 945\u2013962 (1999)","journal-title":"Int. J. Pattern Recognit. Artif. Intell."},{"key":"43_CR29","unstructured":"Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)"},{"issue":"1","key":"43_CR30","first-page":"1","volume":"9","author":"DS Huang","year":"1999","unstructured":"Huang, D.S., Ma, S.D.: Linear and nonlinear feedforward neural network classifiers: a comprehensive understanding. J. Intell. Syst. 9(1), 1\u201338 (1999)","journal-title":"J. Intell. Syst."}],"container-title":["Lecture Notes in Computer Science","Intelligent Computing Theories and Application"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-84522-3_43","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,3,13]],"date-time":"2024-03-13T11:51:21Z","timestamp":1710330681000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-030-84522-3_43"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021]]},"ISBN":["9783030845216","9783030845223"],"references-count":30,"URL":"http:\/\/dx.doi.org\/10.1007\/978-3-030-84522-3_43","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2021]]},"assertion":[{"value":"9 August 2021","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ICIC","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Intelligent Computing","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Shenzhen","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"China","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2021","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"12 August 2021","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"15 August 2021","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"17","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"icic2021a","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/www.ic-icc.cn\/2021\/index.htm","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}