{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,12]],"date-time":"2024-09-12T05:43:30Z","timestamp":1726119810439},"publisher-location":"Cham","reference-count":41,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030721121"},{"type":"electronic","value":"9783030721138"}],"license":[{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2021]]},"DOI":"10.1007\/978-3-030-72113-8_26","type":"book-chapter","created":{"date-parts":[[2021,3,26]],"date-time":"2021-03-26T12:03:02Z","timestamp":1616760182000},"page":"391-404","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":1,"title":["Extracting Search Tasks from Query Logs Using a Recurrent Deep Clustering Architecture"],"prefix":"10.1007","author":[{"given":"Luis","family":"Lugo","sequence":"first","affiliation":[]},{"given":"Jose G.","family":"Moreno","sequence":"additional","affiliation":[]},{"given":"Gilles","family":"Hubert","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2021,3,27]]},"reference":[{"key":"26_CR1","unstructured":"Aljalbout, E., Golkov, V., Siddiqui, Y., Strobel, M., Cremers, D.: Clustering with deep learning: taxonomy and new methods. arXiv preprint arXiv:1801.07648 (2018)"},{"key":"26_CR2","doi-asserted-by":"crossref","unstructured":"Bengio, Y., Louradour, J., Collobert, R., Weston, J.: Curriculum learning. In: Proceedings of the 26th Annual International Conference on Machine Learning, pp. 41\u201348 (2009)","DOI":"10.1145\/1553374.1553380"},{"key":"26_CR3","unstructured":"Blundell, C., Teh, Y.W., Heller, K.A.: Bayesian rose trees. In: Proceedings of the 26th Conference on Uncertainty in Artificial Intelligence, UAI 2010, pp. 65\u201372. AUAI Press, Arlington, Virginia, United States (2010)"},{"key":"26_CR4","unstructured":"Callan, J.: The Lemur project and its ClueWeb12B dataset. In: Invited talk at the SIGIR 2012 Workshop on Open-Source Information Retrieval (2012)"},{"key":"26_CR5","doi-asserted-by":"crossref","unstructured":"Carterette, B., Clough, P., Hall, M., Kanoulas, E., Sanderson, M.: Evaluating retrieval over sessions: the trec session track 2011\u20132014. In: Proceedings of the 39th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 685\u2013688. ACM (2016)","DOI":"10.1145\/2911451.2914675"},{"key":"26_CR6","doi-asserted-by":"crossref","unstructured":"Chang, J., Wang, L., Meng, G., Xiang, S., Pan, C.: Deep adaptive image clustering. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 5880\u20135888. IEEE (2017)","DOI":"10.1109\/ICCV.2017.626"},{"key":"26_CR7","unstructured":"Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. arXiv preprint arXiv:2002.05709 (2020)"},{"key":"26_CR8","unstructured":"Chung, J., Gulcehre, C., Cho, K., Bengio, Y.: Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555 (2014)"},{"key":"26_CR9","doi-asserted-by":"crossref","unstructured":"Du, C., Shu, P., Li, Y.: CA-LSTM: search task identification with context attention based LSTM. In: The 41st International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 1101\u20131104. ACM (2018)","DOI":"10.1145\/3209978.3210087"},{"key":"26_CR10","doi-asserted-by":"crossref","unstructured":"Edunov, S., Ott, M., Auli, M., Grangier, D.: Understanding back-translation at scale. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pp. 489\u2013500 (2018)","DOI":"10.18653\/v1\/D18-1045"},{"key":"26_CR11","unstructured":"Ester, M., Kriegel, H.P., Sander, J., Xu, X., et al.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: The 2nd International Conference on Knowledge Discovery and Data Mining vol. 96, pp. 226\u2013231 (1996)"},{"key":"26_CR12","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-642-24797-2","volume-title":"Supervised Sequence Labelling with Recurrent Neural Networks","author":"A Graves","year":"2012","unstructured":"Graves, A.: Supervised Sequence Labelling with Recurrent Neural Networks. Springer, Heidelberg (2012)"},{"key":"26_CR13","doi-asserted-by":"crossref","unstructured":"Guo, X., Gao, L., Liu, X., Yin, J.: Improved deep embedded clustering with local structure preservation. In: International Joint Conference on Artificial Intelligence, pp. 1753\u20131759 (2017)","DOI":"10.24963\/ijcai.2017\/243"},{"key":"26_CR14","unstructured":"Hagen, M., Gomoll, J., Beyer, A., Stein, B.: From search session detection to search mission detection. In: Proceedings of the 10th Conference on Open Research Areas in Information Retrieval, pp. 85\u201392 (2013)"},{"key":"26_CR15","doi-asserted-by":"crossref","unstructured":"Hearst, M.: Search User Interfaces. Cambridge University Press, Cambridge, CB2 8BS, UK (2009)","DOI":"10.1017\/CBO9781139644082"},{"key":"26_CR16","unstructured":"Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)"},{"key":"26_CR17","unstructured":"Lipton, Z.C., Berkowitz, J., Elkan, C.: A critical review of recurrent neural networks for sequence learning. arXiv preprint arXiv:1506.00019 (2015)"},{"key":"26_CR18","doi-asserted-by":"crossref","unstructured":"Lucchese, C., Orlando, S., Perego, R., Silvestri, F., Tolomei, G.: Identifying task-based sessions in search engine query logs. In: Proceedings of the 4th ACM International Conference on Web Search and Data mining, pp. 277\u2013286. ACM (2011)","DOI":"10.1145\/1935826.1935875"},{"key":"26_CR19","doi-asserted-by":"crossref","unstructured":"Lugo, L., Moreno, J.G., Hubert, G.: A multilingual approach for unsupervised search task identification. In: The 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 2041\u20132044. ACM (2020)","DOI":"10.1145\/3397271.3401258"},{"key":"26_CR20","doi-asserted-by":"crossref","unstructured":"Lugo, L., Moreno, J.G., Hubert, G.: Segmenting search query logs by learning to detect search task boundaries. In: The 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 2037\u20132040. ACM (2020)","DOI":"10.1145\/3397271.3401257"},{"key":"26_CR21","doi-asserted-by":"crossref","unstructured":"Luo, Y., Chen, Z., Hershey, J.R., Le Roux, J., Mesgarani, N.: Deep clustering and conventional networks for music separation: stronger together. In: 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 61\u201365. IEEE (2017)","DOI":"10.1109\/ICASSP.2017.7952118"},{"key":"26_CR22","doi-asserted-by":"crossref","unstructured":"Mehrotra, R., Bhattacharya, P., Yilmaz, E.: Deconstructing complex search tasks: a Bayesian nonparametric approach for extracting sub-tasks. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp. 599\u2013605 (2016)","DOI":"10.18653\/v1\/N16-1073"},{"key":"26_CR23","doi-asserted-by":"crossref","unstructured":"Mehrotra, R., Yilmaz, E.: Extracting hierarchies of search tasks & subtasks via a Bayesian nonparametric approach. In: Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 285\u2013294. ACM (2017)","DOI":"10.1145\/3077136.3080823"},{"key":"26_CR24","doi-asserted-by":"publisher","first-page":"39501","DOI":"10.1109\/ACCESS.2018.2855437","volume":"6","author":"E Min","year":"2018","unstructured":"Min, E., Guo, X., Liu, Q., Zhang, G., Cui, J., Long, J.: A survey of clustering with deep learning: From the perspective of network architecture. IEEE Access 6, 39501\u201339514 (2018)","journal-title":"IEEE Access"},{"volume-title":"Artificial Intelligence: A Guide for Thinking Humans","year":"2019","author":"M Mitchell","key":"26_CR25","unstructured":"Mitchell, M.: Artificial Intelligence: A Guide for Thinking Humans. Farrar, Straus and Giroux, New York, NY, US (2019)"},{"key":"26_CR26","doi-asserted-by":"crossref","unstructured":"Moreno, J.G.: Point symmetry-based deep clustering. In: Proceedings of the 27th ACM International Conference on Information and Knowledge Management, pp. 1747\u20131750. ACM (2018)","DOI":"10.1145\/3269206.3269328"},{"volume-title":"Machine Learning: A Probabilistic Perspective","year":"2012","author":"KP Murphy","key":"26_CR27","unstructured":"Murphy, K.P.: Machine Learning: A Probabilistic Perspective. The MIT Press, Cambridge (2012)"},{"issue":"3","key":"26_CR28","doi-asserted-by":"publisher","first-page":"274","DOI":"10.1007\/s00357-014-9161-z","volume":"31","author":"F Murtagh","year":"2014","unstructured":"Murtagh, F., Legendre, P.: Ward\u2019s hierarchical agglomerative clustering method: which algorithms implement Ward\u2019s criterion? J. Classif. 31(3), 274\u2013295 (2014)","journal-title":"J. Classif."},{"key":"26_CR29","doi-asserted-by":"crossref","unstructured":"Pennington, J., Socher, R., Manning, C.D.: GloVe: global vectors for word representation. In: Empirical Methods in Natural Language Processing (EMNLP), pp. 1532\u20131543 (2014)","DOI":"10.3115\/v1\/D14-1162"},{"key":"26_CR30","doi-asserted-by":"crossref","unstructured":"Sen, P., Ganguly, D., Jones, G.: Tempo-lexical context driven word embedding for cross-session search task extraction. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp. 283\u2013292 (2018)","DOI":"10.18653\/v1\/N18-1026"},{"key":"26_CR31","volume-title":"Introduction to Data Mining","author":"PN Tan","year":"2018","unstructured":"Tan, P.N., Steinbach, M., Karpatne, A., Kumar, V.: Introduction to Data Mining, 2nd edn. Pearson Education, London (2018)","edition":"2"},{"key":"26_CR32","doi-asserted-by":"crossref","unstructured":"V\u00f6lske, M., Fatehifar, E., Stein, B., Hagen, M.: Query-task mapping. In: Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 969\u2013972 (2019)","DOI":"10.1145\/3331184.3331286"},{"key":"26_CR33","doi-asserted-by":"crossref","unstructured":"Wang, H., Song, Y., Chang, M.W., He, X., White, R.W., Chu, W.: Learning to extract cross-session search tasks. In: Proceedings of the 22nd International Conference on World Wide Web, pp. 1353\u20131364. ACM (2013)","DOI":"10.1145\/2488388.2488507"},{"key":"26_CR34","doi-asserted-by":"crossref","unstructured":"Wang, Z.Q., Le Roux, J., Hershey, J.R.: Alternative objective functions for deep clustering. In: 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 686\u2013690. IEEE (2018)","DOI":"10.1109\/ICASSP.2018.8462507"},{"issue":"301","key":"26_CR35","doi-asserted-by":"publisher","first-page":"236","DOI":"10.1080\/01621459.1963.10500845","volume":"58","author":"JH Ward Jr","year":"1963","unstructured":"Ward Jr., J.H.: Hierarchical grouping to optimize an objective function. J. Am. Stat. Assoc. 58(301), 236\u2013244 (1963)","journal-title":"J. Am. Stat. Assoc."},{"key":"26_CR36","unstructured":"Xie, J., Girshick, R., Farhadi, A.: Unsupervised deep embedding for clustering analysis. In: International Conference on Machine Learning, pp. 478\u2013487 (2016)"},{"key":"26_CR37","unstructured":"Xie, Q., Dai, Z., Hovy, E., Luong, M.T., Le, Q.V.: Unsupervised data augmentation for consistency training. arXiv preprint arXiv:1904.12848 (2019)"},{"key":"26_CR38","doi-asserted-by":"crossref","unstructured":"Yang, Y., et al.: Improving multilingual sentence embedding using bi-directional dual encoder with additive margin softmax. In: Proceedings of the 28th International Joint Conference on Artificial Intelligence, pp. 5370\u20135378. AAAI Press (2019)","DOI":"10.24963\/ijcai.2019\/746"},{"key":"26_CR39","doi-asserted-by":"crossref","unstructured":"Yang, Y., et al.: Multilingual universal sentence encoder for semantic retrieval. In: Proceedings of the 58th Annual Meeting of the ACL: System Demonstrations, pp. 87\u201394. ACL (2020)","DOI":"10.18653\/v1\/2020.acl-demos.12"},{"key":"26_CR40","doi-asserted-by":"crossref","unstructured":"Zhang, H., et al.: Generic intent representation in web search. In: The 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval. ACM (2019)","DOI":"10.1145\/3331184.3331198"},{"key":"26_CR41","unstructured":"Zoph, B., et al.: Rethinking pre-training and self-training. arXiv preprint arXiv:2006.06882 (2020)"}],"container-title":["Lecture Notes in Computer Science","Advances in Information Retrieval"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-72113-8_26","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,3,12]],"date-time":"2024-03-12T11:57:35Z","timestamp":1710244655000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-030-72113-8_26"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021]]},"ISBN":["9783030721121","9783030721138"],"references-count":41,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-72113-8_26","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2021]]},"assertion":[{"value":"27 March 2021","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ECIR","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"European Conference on Information Retrieval","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2021","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"28 March 2021","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"1 April 2021","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"43","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"ecir2021","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/www.ecir2021.eu\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Double-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"EasyChair","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"436","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"50","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"39","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"11% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Yes","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}