iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://api.crossref.org/works/10.1007/978-3-030-63393-6_31
{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,12]],"date-time":"2024-09-12T03:16:34Z","timestamp":1726110994783},"publisher-location":"Cham","reference-count":18,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030633929"},{"type":"electronic","value":"9783030633936"}],"license":[{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2020]]},"DOI":"10.1007\/978-3-030-63393-6_31","type":"book-chapter","created":{"date-parts":[[2020,12,22]],"date-time":"2020-12-22T09:04:28Z","timestamp":1608627868000},"page":"465-478","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Towards a Universal Classifier for Crystallographic Space Groups: A Trickle-Down Approach to Handle Data Imbalance"],"prefix":"10.1007","author":[{"ORCID":"http:\/\/orcid.org\/0000-0001-5308-914X","authenticated-orcid":false,"given":"Sajal","family":"Dash","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-2861-818X","authenticated-orcid":false,"given":"Archi","family":"Dasgupta","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2020,12,18]]},"reference":[{"key":"31_CR1","doi-asserted-by":"publisher","first-page":"321","DOI":"10.1613\/jair.953","volume":"16","author":"NV Chawla","year":"2002","unstructured":"Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321\u2013357 (2002)","journal-title":"J. Artif. Intell. Res."},{"key":"31_CR2","unstructured":"Chen, T., He, T., Benesty, M., Khotilovich, V., Tang, Y.: Xgboost: extreme gradient boosting. R package version (4-2), 1\u20134 (2015)"},{"key":"31_CR3","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"124","DOI":"10.1007\/978-3-030-21935-2_11","volume-title":"Distributed, Ambient and Pervasive Interactions","author":"A Dasgupta","year":"2019","unstructured":"Dasgupta, A., Handosa, M., Manuel, M., Gra\u010danin, D.: A User-centric design framework for smart built environments. In: Streitz, N., Konomi, S. (eds.) HCII 2019. LNCS, vol. 11587, pp. 124\u2013143. Springer, Cham (2019). https:\/\/doi.org\/10.1007\/978-3-030-21935-2_11"},{"key":"31_CR4","doi-asserted-by":"crossref","unstructured":"Dasgupta, A., Manuel, M., Mansur, R.S., Nowak, N., Gra\u010danin, D.: Towards real time object recognition for context awareness in mixed reality: a machine learning approach. In: 2020 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW), pp. 262\u2013268. IEEE (2020)","DOI":"10.1109\/VRW50115.2020.00054"},{"key":"31_CR5","unstructured":"Dash, S.: Exploring the landscape of big data analytics through domain-aware algorithm design. Ph.D. thesis, Virginia Tech (2020)"},{"key":"31_CR6","doi-asserted-by":"crossref","unstructured":"Dash, S., Rahman, S., Hines, H.M., Feng, W.C.: Incremental blast: incremental addition of new sequence databases through e-value correction. bioRxiv, p. 476218 (2018)","DOI":"10.1101\/476218"},{"key":"31_CR7","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"878","DOI":"10.1007\/11538059_91","volume-title":"Advances in Intelligent Computing","author":"H Han","year":"2005","unstructured":"Han, H., Wang, W.-Y., Mao, B.-H.: Borderline-SMOTE: a new over-sampling method in imbalanced data sets learning. In: Huang, D.-S., Zhang, X.-P., Huang, G.-B. (eds.) ICIC 2005. LNCS, vol. 3644, pp. 878\u2013887. Springer, Heidelberg (2005). https:\/\/doi.org\/10.1007\/11538059_91"},{"key":"31_CR8","doi-asserted-by":"crossref","unstructured":"He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770\u2013778 (2016)","DOI":"10.1109\/CVPR.2016.90"},{"key":"31_CR9","unstructured":"Kaufmann, K., et al.: Paradigm shift in electron-based crystallography via machine learning. arXiv preprint arXiv:1902.03682 (2019)"},{"issue":"6477","key":"31_CR10","doi-asserted-by":"publisher","first-page":"564","DOI":"10.1126\/science.aay3062","volume":"367","author":"K Kaufmann","year":"2020","unstructured":"Kaufmann, K., Zhu, C., Rosengarten, A.S., Maryanovsky, D., Harrington, T.J., Marin, E., Vecchio, K.S.: Crystal symmetry determination in electron diffraction using machine learning. Science 367(6477), 564\u2013568 (2020)","journal-title":"Science"},{"issue":"3","key":"31_CR11","doi-asserted-by":"publisher","first-page":"447","DOI":"10.1017\/S1431927620001506","volume":"26","author":"K Kaufmann","year":"2020","unstructured":"Kaufmann, K., Zhu, C., Rosengarten, A.S., Vecchio, K.S.: Deep neural network enabled space group identification in EBSD. Microsc. Microanal. 26(3), 447\u2013457 (2020)","journal-title":"Microsc. Microanal."},{"key":"31_CR12","unstructured":"Laanait, N., Yin, J., Borisevich, A.: Towards a universal classifier for crystallographic space groups (2020). https:\/\/smc-datachallenge.ornl.gov\/challenges-2020\/challenge-2-2020\/"},{"key":"31_CR13","unstructured":"Liang, S., Srikant, R.: Why deep neural networks for function approximation? arXiv preprint arXiv:1610.04161 (2016)"},{"key":"31_CR14","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"378","DOI":"10.1007\/978-3-319-64185-0_28","volume-title":"Digital Forensics and Watermarking","author":"X Ren","year":"2017","unstructured":"Ren, X., Guo, H., Li, S., Wang, S., Li, J.: A novel image classification method with CNN-XGBoost model. In: Kraetzer, C., Shi, Y.-Q., Dittmann, J., Kim, H.J. (eds.) IWDW 2017. LNCS, vol. 10431, pp. 378\u2013390. Springer, Cham (2017). https:\/\/doi.org\/10.1007\/978-3-319-64185-0_28"},{"key":"31_CR15","unstructured":"Sergeev, A., Del Balso, M.: Horovod: fast and easy distributed deep learning in tensorflow. arXiv preprint arXiv:1802.05799 (2018)"},{"key":"31_CR16","unstructured":"Tasooji, R., Dasgupta, A., Gra\u010danin, D., LaGro, M., Matkovi\u0107, K.: A multi-purpose IOT framework for smart built environments. In: Proceedings of the 2018 Winter Simulation Conference, pp. 4240\u20134241. IEEE Press (2018)"},{"issue":"3","key":"31_CR17","doi-asserted-by":"publisher","first-page":"5718","DOI":"10.1016\/j.eswa.2008.06.108","volume":"36","author":"SJ Yen","year":"2009","unstructured":"Yen, S.J., Lee, Y.S.: Cluster-based under-sampling approaches for imbalanced data distributions. Expert Syst. Appl. 36(3), 5718\u20135727 (2009)","journal-title":"Expert Syst. Appl."},{"key":"31_CR18","doi-asserted-by":"crossref","unstructured":"Yin, J., et al.: Strategies to deploy and scale deep learning on the summit supercomputer. In: 2019 IEEE\/ACM Third Workshop on Deep Learning on Supercomputers (DLS), pp. 84\u201394. IEEE (2019)","DOI":"10.1109\/DLS49591.2019.00016"}],"container-title":["Communications in Computer and Information Science","Driving Scientific and Engineering Discoveries Through the Convergence of HPC, Big Data and AI"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-63393-6_31","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2021,4,24]],"date-time":"2021-04-24T03:09:59Z","timestamp":1619233799000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-030-63393-6_31"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020]]},"ISBN":["9783030633929","9783030633936"],"references-count":18,"URL":"http:\/\/dx.doi.org\/10.1007\/978-3-030-63393-6_31","relation":{},"ISSN":["1865-0929","1865-0937"],"issn-type":[{"type":"print","value":"1865-0929"},{"type":"electronic","value":"1865-0937"}],"subject":[],"published":{"date-parts":[[2020]]},"assertion":[{"value":"18 December 2020","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"SMC","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Smoky Mountains Computational Sciences and Engineering Conference","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Oak Ridge, TN","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"USA","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2020","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"26 August 2020","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"28 August 2020","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"17","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"smc2020","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/smc.ornl.gov\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"easychair","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"94","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"36","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"1","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"38% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3.75","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"No","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"The conference was held virtually due to the COVID-19 pandemic.","order":10,"name":"additional_info_on_review_process","label":"Additional Info on Review Process","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}