iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://api.crossref.org/works/10.1007/978-3-030-60259-8_54
{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,12]],"date-time":"2024-09-12T00:37:59Z","timestamp":1726101479015},"publisher-location":"Cham","reference-count":12,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030602581"},{"type":"electronic","value":"9783030602598"}],"license":[{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2020]]},"DOI":"10.1007\/978-3-030-60259-8_54","type":"book-chapter","created":{"date-parts":[[2020,10,15]],"date-time":"2020-10-15T10:04:33Z","timestamp":1602756273000},"page":"740-747","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":1,"title":["Global and Local Attention Embedding Network for Few-Shot Fine-Grained Image Classification"],"prefix":"10.1007","author":[{"given":"Jiayuan","family":"Hu","sequence":"first","affiliation":[]},{"given":"Chung-Ming","family":"Own","sequence":"additional","affiliation":[]},{"given":"Wenyuan","family":"Tao","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2020,10,16]]},"reference":[{"key":"54_CR1","doi-asserted-by":"crossref","unstructured":"Wertheimer, D., Hariharan, B.: Few-shot learning with localization in realistic settings. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6558\u20136567 (2019)","DOI":"10.1109\/CVPR.2019.00672"},{"key":"54_CR2","unstructured":"Snell, J., Swersky, K., Zemel, R.: Prototypical networks for few-shot learning. In: Advances in Neural Information Processing Systems, pp. 4077\u20134087 (2017)"},{"key":"54_CR3","doi-asserted-by":"crossref","unstructured":"Sung, F., Yang, Y., Zhang, L., Xiang, T., Torr, P.H., Hospedales, T.M.: Learning to compare: relation network for few-shot learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1199\u20131208 (2018)","DOI":"10.1109\/CVPR.2018.00131"},{"key":"54_CR4","doi-asserted-by":"crossref","unstructured":"Zhang, Y., Tang, S., Muandet, K., Jarvers, C., Neumann, H.: Local temporal bilinear pooling for fine-grained action parsing. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 12005\u201312015 (2019)","DOI":"10.1109\/CVPR.2019.01228"},{"key":"54_CR5","doi-asserted-by":"crossref","unstructured":"Li, W., Wang, L., Xu, J., Huo, J., Gao, Y., Luo, J.: Revisiting local descriptor based image-to-class measure for few-shot learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7260\u20137268 (2019)","DOI":"10.1109\/CVPR.2019.00743"},{"key":"54_CR6","unstructured":"Wang, Y., Yao, Q., Kwok, J., Ni, L.M.: Generalizing from a few examples: a survey on few-shot learning (2019). arXiv: 1904.05046"},{"issue":"3","key":"54_CR7","doi-asserted-by":"publisher","first-page":"1487","DOI":"10.1109\/TIP.2017.2774041","volume":"27","author":"Y Peng","year":"2017","unstructured":"Peng, Y., He, X., Zhao, J.: Object-part attention model for fine-grained image classification. IEEE Trans. Image Process. 27(3), 1487\u20131500 (2017)","journal-title":"IEEE Trans. Image Process."},{"key":"54_CR8","doi-asserted-by":"crossref","unstructured":"Lin, T.Y., RoyChowdhury, A., Maji, S.: Bilinear CNN models for fine-grained visual recognition. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1449\u20131457 (2015)","DOI":"10.1109\/ICCV.2015.170"},{"issue":"12","key":"54_CR9","doi-asserted-by":"publisher","first-page":"6116","DOI":"10.1109\/TIP.2019.2924811","volume":"28","author":"XS Wei","year":"2019","unstructured":"Wei, X.S., Wang, P., Liu, L., Shen, C., Wu, J.: Piecewise classifier mappings: learning fine-grained learners for novel categories with few examples. IEEE Trans. Image Process. 28(12), 6116\u20136125 (2019)","journal-title":"IEEE Trans. Image Process."},{"key":"54_CR10","unstructured":"Vinyals, O., et al.: Matching networks for one shot learning. In: Advances in Neural Information Processing Systems, pp. 3630\u20133638 (2016)"},{"key":"54_CR11","unstructured":"Garcia, V., Bruna, J.: Few-shot learning with graph neural networks. arXiv preprint (2017). arXiv:1711.04043"},{"key":"54_CR12","doi-asserted-by":"crossref","unstructured":"Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4700\u20134708 (2017)","DOI":"10.1109\/CVPR.2017.243"}],"container-title":["Lecture Notes in Computer Science","Web and Big Data"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-60259-8_54","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2021,4,24]],"date-time":"2021-04-24T21:40:18Z","timestamp":1619300418000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-030-60259-8_54"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020]]},"ISBN":["9783030602581","9783030602598"],"references-count":12,"URL":"http:\/\/dx.doi.org\/10.1007\/978-3-030-60259-8_54","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2020]]},"assertion":[{"value":"16 October 2020","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"APWeb-WAIM","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Asia-Pacific Web (APWeb) and Web-Age Information Management (WAIM) Joint International Conference on Web and Big Data","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Tianjin","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"China","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2020","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"12 August 2020","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"14 August 2020","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"4","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"apwebwaim2020","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/www.tjudb.cn\/apwebwaim2020\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Double-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Microsoft CMT","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"259","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"68","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"37","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"26% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"4.6","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"No","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Due to the COVID-19 pandemic the conference was organized as a fully online conference.","order":10,"name":"additional_info_on_review_process","label":"Additional Info on Review Process","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}