{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,11]],"date-time":"2024-09-11T22:22:29Z","timestamp":1726093349214},"publisher-location":"Cham","reference-count":49,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030578206"},{"type":"electronic","value":"9783030578213"}],"license":[{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2020]]},"DOI":"10.1007\/978-3-030-57821-3_9","type":"book-chapter","created":{"date-parts":[[2020,8,17]],"date-time":"2020-08-17T09:08:43Z","timestamp":1597655323000},"page":"95-104","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":4,"title":["Ess-NEXG: Predict Essential Proteins by Constructing a Weighted Protein Interaction Network Based on Node Embedding and XGBoost"],"prefix":"10.1007","author":[{"given":"Nian","family":"Wang","sequence":"first","affiliation":[]},{"given":"Min","family":"Zeng","sequence":"additional","affiliation":[]},{"given":"Jiashuai","family":"Zhang","sequence":"additional","affiliation":[]},{"given":"Yiming","family":"Li","sequence":"additional","affiliation":[]},{"given":"Min","family":"Li","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2020,8,18]]},"reference":[{"key":"9_CR1","doi-asserted-by":"publisher","first-page":"901","DOI":"10.1126\/science.285.5429.901","volume":"285","author":"EA Winzeler","year":"1999","unstructured":"Winzeler, E.A., et al.: Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 285, 901\u2013906 (1999)","journal-title":"Science"},{"key":"9_CR2","doi-asserted-by":"publisher","first-page":"541","DOI":"10.1038\/nchembio.2007.24","volume":"3","author":"AE Clatworthy","year":"2007","unstructured":"Clatworthy, A.E., Pierson, E., Hung, D.T.: Targeting virulence: a new paradigm for antimicrobial therapy. Nat. Chem. Biol. 3, 541 (2007)","journal-title":"Nat. Chem. Biol."},{"key":"9_CR3","doi-asserted-by":"publisher","first-page":"165","DOI":"10.1186\/1471-2164-7-165","volume":"7","author":"SJ Furney","year":"2006","unstructured":"Furney, S.J., Alb\u00e0, M.M., L\u00f3pez-Bigas, N.: Differences in the evolutionary history of disease genes affected by dominant or recessive mutations. BMC Genom. 7, 165 (2006). https:\/\/doi.org\/10.1186\/1471-2164-7-165","journal-title":"BMC Genom."},{"key":"9_CR4","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1186\/s12859-018-2565-8","volume":"20","author":"J Zhao","year":"2019","unstructured":"Zhao, J., Lei, X.: Detecting overlapping protein complexes in weighted PPI network based on overlay network chain in quotient space. BMC Bioinform. 20, 1\u201312 (2019)","journal-title":"BMC Bioinform."},{"key":"9_CR5","doi-asserted-by":"publisher","first-page":"167","DOI":"10.1046\/j.1365-2958.2003.03697.x","volume":"50","author":"T Roemer","year":"2003","unstructured":"Roemer, T., et al.: Large-scale essential gene identification in Candida albicans and applications to antifungal drug discovery. Mol. Microbiol. 50, 167\u2013181 (2003)","journal-title":"Mol. Microbiol."},{"key":"9_CR6","doi-asserted-by":"publisher","first-page":"217","DOI":"10.1111\/j.1440-1711.2005.01332.x","volume":"83","author":"LM Cullen","year":"2005","unstructured":"Cullen, L.M., Arndt, G.M.: Genome-wide screening for gene function using RNAi in mammalian cells. Immunol. Cell Biol. 83, 217\u2013223 (2005)","journal-title":"Immunol. Cell Biol."},{"key":"9_CR7","doi-asserted-by":"publisher","first-page":"387","DOI":"10.1038\/nature00935","volume":"418","author":"G Giaever","year":"2002","unstructured":"Giaever, G., et al.: Functional profiling of the Saccharomyces cerevisiae genome. Nature 418, 387 (2002)","journal-title":"Nature"},{"key":"9_CR8","doi-asserted-by":"publisher","first-page":"41","DOI":"10.1038\/35075138","volume":"411","author":"H Jeong","year":"2001","unstructured":"Jeong, H., Mason, S.P., Barab\u00e1si, A.-L., Oltvai, Z.N.: Lethality and centrality in protein networks. Nature 411, 41 (2001)","journal-title":"Nature"},{"key":"9_CR9","doi-asserted-by":"publisher","first-page":"803","DOI":"10.1093\/molbev\/msi072","volume":"22","author":"MW Hahn","year":"2004","unstructured":"Hahn, M.W., Kern, A.D.: Comparative genomics of centrality and essentiality in three eukaryotic protein-interaction networks. Mol. Biol. Evol. 22, 803\u2013806 (2004)","journal-title":"Mol. Biol. Evol."},{"key":"9_CR10","doi-asserted-by":"crossref","first-page":"96","DOI":"10.1155\/JBB.2005.96","volume":"2005","author":"MP Joy","year":"2005","unstructured":"Joy, M.P., Brock, A., Ingber, D.E., Huang, S.: High-betweenness proteins in the yeast protein interaction network. Biomed. Res. Int. 2005, 96\u2013103 (2005)","journal-title":"Biomed. Res. Int."},{"key":"9_CR11","doi-asserted-by":"publisher","first-page":"45","DOI":"10.1016\/S0022-5193(03)00071-7","volume":"223","author":"S Wuchty","year":"2003","unstructured":"Wuchty, S., Stadler, P.F.: Centers of complex networks. J. Theor. Biol. 223, 45\u201353 (2003)","journal-title":"J. Theor. Biol."},{"key":"9_CR12","doi-asserted-by":"publisher","first-page":"056103","DOI":"10.1103\/PhysRevE.71.056103","volume":"71","author":"E Estrada","year":"2005","unstructured":"Estrada, E., Rodriguez-Velazquez, J.A.: Subgraph centrality in complex networks. Phys. Rev. E 71, 056103 (2005)","journal-title":"Phys. Rev. E"},{"key":"9_CR13","doi-asserted-by":"publisher","first-page":"1170","DOI":"10.1086\/228631","volume":"92","author":"P Bonacich","year":"1987","unstructured":"Bonacich, P.: Power and centrality: a family of measures. Am. J. Sociol. 92, 1170\u20131182 (1987)","journal-title":"Am. J. Sociol."},{"key":"9_CR14","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1016\/0378-8733(89)90016-6","volume":"11","author":"K Stephenson","year":"1989","unstructured":"Stephenson, K., Zelen, M.: Rethinking centrality: methods and examples. Soc. Netw. 11, 1\u201337 (1989)","journal-title":"Soc. Netw."},{"key":"9_CR15","doi-asserted-by":"publisher","first-page":"143","DOI":"10.1016\/j.compbiolchem.2011.04.002","volume":"35","author":"M Li","year":"2011","unstructured":"Li, M., Wang, J., Chen, X., Wang, H., Pan, Y.: A local average connectivity-based method for identifying essential proteins from the network level. Comput. Biol. Chem. 35, 143\u2013150 (2011)","journal-title":"Comput. Biol. Chem."},{"key":"9_CR16","doi-asserted-by":"publisher","first-page":"15","DOI":"10.1186\/1752-0509-6-15","volume":"6","author":"M Li","year":"2012","unstructured":"Li, M., Zhang, H., Wang, J.-X., Pan, Y.: A new essential protein discovery method based on the integration of protein-protein interaction and gene expression data. BMC Syst. Biol. 6, 15 (2012). https:\/\/doi.org\/10.1186\/1752-0509-6-15","journal-title":"BMC Syst. Biol."},{"key":"9_CR17","doi-asserted-by":"publisher","first-page":"276","DOI":"10.1109\/TCBB.2014.2338317","volume":"12","author":"W Peng","year":"2015","unstructured":"Peng, W., Wang, J., Cheng, Y., Lu, Y., Wu, F., Pan, Y.: UDoNC: an algorithm for identifying essential proteins based on protein domains and protein-protein interaction networks. IEEE\/ACM Trans. Comput. Biol. Bioinform. (TCBB) 12, 276\u2013288 (2015)","journal-title":"IEEE\/ACM Trans. Comput. Biol. Bioinform. (TCBB)"},{"key":"9_CR18","doi-asserted-by":"publisher","first-page":"87","DOI":"10.1186\/1752-0509-6-87","volume":"6","author":"W Peng","year":"2012","unstructured":"Peng, W., Wang, J., Wang, W., Liu, Q., Wu, F.-X., Pan, Y.: Iteration method for predicting essential proteins based on orthology and protein-protein interaction networks. BMC Syst. Biol. 6, 87 (2012). https:\/\/doi.org\/10.1186\/1752-0509-6-87","journal-title":"BMC Syst. Biol."},{"key":"9_CR19","doi-asserted-by":"publisher","first-page":"e0182031","DOI":"10.1371\/journal.pone.0182031","volume":"12","author":"C Qin","year":"2017","unstructured":"Qin, C., Sun, Y., Dong, Y.: A new computational strategy for identifying essential proteins based on network topological properties and biological information. PLoS ONE 12, e0182031 (2017)","journal-title":"PLoS ONE"},{"key":"9_CR20","doi-asserted-by":"publisher","first-page":"1672","DOI":"10.1039\/b900611g","volume":"5","author":"Y-C Hwang","year":"2009","unstructured":"Hwang, Y.-C., Lin, C.-C., Chang, J.-Y., Mori, H., Juan, H.-F., Huang, H.-C.: Predicting essential genes based on network and sequence analysis. Mol. BioSyst. 5, 1672\u20131678 (2009)","journal-title":"Mol. BioSyst."},{"key":"9_CR21","doi-asserted-by":"publisher","first-page":"e86805","DOI":"10.1371\/journal.pone.0086805","volume":"9","author":"J Cheng","year":"2014","unstructured":"Cheng, J., et al.: Training set selection for the prediction of essential genes. PLoS ONE 9, e86805 (2014)","journal-title":"PLoS ONE"},{"key":"9_CR22","doi-asserted-by":"publisher","first-page":"S7","DOI":"10.1186\/1471-2164-14-S4-S7","volume":"14","author":"J Zhong","year":"2013","unstructured":"Zhong, J., Wang, J., Peng, W., Zhang, Z., Pan, Y.: Prediction of essential proteins based on gene expression programming. BMC Genom. 14, S7 (2013). https:\/\/doi.org\/10.1186\/1471-2164-14-S4-S7","journal-title":"BMC Genom."},{"key":"9_CR23","doi-asserted-by":"publisher","first-page":"290","DOI":"10.1186\/1471-2105-10-290","volume":"10","author":"ML Acencio","year":"2009","unstructured":"Acencio, M.L., Lemke, N.: Towards the prediction of essential genes by integration of network topology, cellular localization and biological process information. BMC Bioinform. 10, 290 (2009). https:\/\/doi.org\/10.1186\/1471-2105-10-290","journal-title":"BMC Bioinform."},{"key":"9_CR24","doi-asserted-by":"publisher","unstructured":"Zeng, M., et al.: A deep learning framework for identifying essential proteins by integrating multiple types of biological information. IEEE\/ACM Trans. Comput. Biol. Bioinform. (2019). https:\/\/doi.org\/10.1109\/TCBB.2019.2897679","DOI":"10.1109\/TCBB.2019.2897679"},{"key":"9_CR25","doi-asserted-by":"publisher","first-page":"506","DOI":"10.1186\/s12859-019-3076-y","volume":"20","author":"M Zeng","year":"2019","unstructured":"Zeng, M., Li, M., Wu, F.-X., Li, Y., Pan, Y.: DeepEP: a deep learning framework for identifying essential proteins. BMC Bioinform. 20, 506 (2019). https:\/\/doi.org\/10.1186\/s12859-019-3076-y","journal-title":"BMC Bioinform."},{"key":"9_CR26","doi-asserted-by":"crossref","unstructured":"Zeng, M., Li, M., Fei, Z., Wu, F.-X., Li, Y., Pan, Y.: A deep learning framework for identifying essential proteins based on protein-protein interaction network and gene expression data. In: 2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 583\u2013588. IEEE (2018)","DOI":"10.1109\/BIBM.2018.8621551"},{"key":"9_CR27","doi-asserted-by":"publisher","unstructured":"Zhang, F., et al.: A deep learning framework for gene ontology annotations with sequence-and network-based information. IEEE\/ACM Trans. Comput. Biol. Bioinform. (2020). https:\/\/doi.org\/10.1109\/TCBB.2020.2968882","DOI":"10.1109\/TCBB.2020.2968882"},{"key":"9_CR28","doi-asserted-by":"publisher","first-page":"1900019","DOI":"10.1002\/pmic.201900019","volume":"19","author":"F Zhang","year":"2019","unstructured":"Zhang, F., Song, H., Zeng, M., Li, Y., Kurgan, L., Li, M.: DeepFunc: a deep learning framework for accurate prediction of protein functions from protein sequences and interactions. Proteomics 19, 1900019 (2019)","journal-title":"Proteomics"},{"key":"9_CR29","doi-asserted-by":"publisher","first-page":"399","DOI":"10.1038\/nature750","volume":"417","author":"C Von Mering","year":"2002","unstructured":"Von Mering, C., et al.: Comparative assessment of large-scale data sets of protein\u2013protein interactions. Nature 417, 399 (2002)","journal-title":"Nature"},{"key":"9_CR30","doi-asserted-by":"publisher","first-page":"D535","DOI":"10.1093\/nar\/gkj109","volume":"34","author":"C Stark","year":"2006","unstructured":"Stark, C., Breitkreutz, B.-J., Reguly, T., Boucher, L., Breitkreutz, A., Tyers, M.: BioGRID: a general repository for interaction datasets. Nucleic Acids Res. 34, D535\u2013D539 (2006)","journal-title":"Nucleic Acids Res."},{"key":"9_CR31","doi-asserted-by":"publisher","first-page":"65","DOI":"10.1016\/j.jtbi.2018.03.029","volume":"447","author":"M Li","year":"2018","unstructured":"Li, M., Li, W., Wu, F.-X., Pan, Y., Wang, J.: Identifying essential proteins based on sub-network partition and prioritization by integrating subcellular localization information. J. Theor. Biol. 447, 65\u201373 (2018)","journal-title":"J. Theor. Biol."},{"key":"9_CR32","doi-asserted-by":"publisher","first-page":"407","DOI":"10.1109\/TCBB.2013.2295318","volume":"11","author":"X Tang","year":"2014","unstructured":"Tang, X., Wang, J., Zhong, J., Pan, Y.: Predicting essential proteins based on weighted degree centrality. IEEE\/ACM Trans. Comput. Biol. Bioinform. (TCBB) 11, 407\u2013418 (2014)","journal-title":"IEEE\/ACM Trans. Comput. Biol. Bioinform. (TCBB)"},{"key":"9_CR33","doi-asserted-by":"publisher","first-page":"136","DOI":"10.1016\/j.knosys.2018.03.027","volume":"151","author":"X Lei","year":"2018","unstructured":"Lei, X., Zhao, J., Fujita, H., Zhang, A.: Predicting essential proteins based on RNA-Seq, subcellular localization and GO annotation datasets. Knowl.-Based Syst. 151, 136\u2013148 (2018)","journal-title":"Knowl.-Based Syst."},{"key":"9_CR34","doi-asserted-by":"publisher","first-page":"136012","DOI":"10.1109\/ACCESS.2019.2942843","volume":"7","author":"J Zhao","year":"2019","unstructured":"Zhao, J., Lei, X.: Predicting essential proteins based on second-order neighborhood information and information entropy. IEEE Access 7, 136012\u2013136022 (2019)","journal-title":"IEEE Access"},{"key":"9_CR35","doi-asserted-by":"publisher","first-page":"31","DOI":"10.1093\/nar\/30.1.31","volume":"30","author":"H-W Mewes","year":"2002","unstructured":"Mewes, H.-W., et al.: MIPS: a database for genomes and protein sequences. Nucleic Acids Res. 30, 31\u201334 (2002)","journal-title":"Nucleic Acids Res."},{"key":"9_CR36","doi-asserted-by":"publisher","first-page":"73","DOI":"10.1093\/nar\/26.1.73","volume":"26","author":"JM Cherry","year":"1998","unstructured":"Cherry, J.M., et al.: SGD: saccharomyces genome database. Nucleic Acids Res. 26, 73\u201379 (1998)","journal-title":"Nucleic Acids Res."},{"key":"9_CR37","doi-asserted-by":"publisher","first-page":"D455","DOI":"10.1093\/nar\/gkn858","volume":"37","author":"R Zhang","year":"2008","unstructured":"Zhang, R., Lin, Y.: DEG 5.0, a database of essential genes in both prokaryotes and eukaryotes. Nucleic Acids Res. 37, D455\u2013D458 (2008)","journal-title":"Nucleic Acids Res."},{"key":"9_CR38","doi-asserted-by":"publisher","first-page":"D901","DOI":"10.1093\/nar\/gkr986","volume":"40","author":"W-H Chen","year":"2011","unstructured":"Chen, W.-H., Minguez, P., Lercher, M.J., Bork, P.: OGEE: an online gene essentiality database. Nucleic Acids Res. 40, D901\u2013D906 (2011)","journal-title":"Nucleic Acids Res."},{"key":"9_CR39","first-page":"1","volume":"2017","author":"J Zhao","year":"2017","unstructured":"Zhao, J., Lei, X., Wu, F.-X.: Predicting protein complexes in weighted dynamic PPI networks based on ICSC. Complexity 2017, 1\u201311 (2017)","journal-title":"Complexity"},{"key":"9_CR40","doi-asserted-by":"crossref","unstructured":"Binder, J.X., et al.: COMPARTMENTS: unification and visualization of protein subcellular localization evidence. Database 2014 (2014)","DOI":"10.1093\/database\/bau012"},{"key":"9_CR41","doi-asserted-by":"publisher","first-page":"D196","DOI":"10.1093\/nar\/gkp931","volume":"38","author":"G \u00d6stlund","year":"2009","unstructured":"\u00d6stlund, G., et al.: InParanoid 7: new algorithms and tools for eukaryotic orthology analysis. Nucleic Acids Res. 38, D196\u2013D203 (2009)","journal-title":"Nucleic Acids Res."},{"key":"9_CR42","doi-asserted-by":"crossref","unstructured":"Grover, A., Leskovec, J.: node2vec: scalable feature learning for networks. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 855\u2013864. ACM (2016)","DOI":"10.1145\/2939672.2939754"},{"key":"9_CR43","unstructured":"Goldberg, Y., Levy, O.: word2vec explained: deriving Mikolov et al.\u2019s negative-sampling word-embedding method. arXiv preprint arXiv:1402.3722 (2014)"},{"key":"9_CR44","doi-asserted-by":"crossref","unstructured":"Perozzi, B., Al-Rfou, R., Skiena, S.: Deepwalk: online learning of social representations. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 701\u2013710. ACM (2014)","DOI":"10.1145\/2623330.2623732"},{"key":"9_CR45","doi-asserted-by":"publisher","first-page":"1203","DOI":"10.1049\/iet-rsn.2016.0632","volume":"11","author":"W Chen","year":"2017","unstructured":"Chen, W., Fu, K., Zuo, J., Zheng, X., Huang, T., Ren, W.: Radar emitter classification for large data set based on weighted-xgboost. IET Radar Sonar Navig. 11, 1203\u20131207 (2017)","journal-title":"IET Radar Sonar Navig."},{"key":"9_CR46","doi-asserted-by":"publisher","first-page":"5","DOI":"10.1023\/A:1010933404324","volume":"45","author":"L Breiman","year":"2001","unstructured":"Breiman, L.: Random forests. Mach. Learn. 45, 5\u201332 (2001). https:\/\/doi.org\/10.1023\/A:1010933404324","journal-title":"Mach. Learn."},{"key":"9_CR47","first-page":"1612","volume":"14","author":"Y Freund","year":"1999","unstructured":"Freund, Y., Schapire, R., Abe, N.: A short introduction to boosting. J.-Japn. Soc. Artif. Intell. 14, 1612 (1999)","journal-title":"J.-Japn. Soc. Artif. Intell."},{"key":"9_CR48","doi-asserted-by":"publisher","first-page":"43","DOI":"10.1016\/j.neucom.2018.04.081","volume":"324","author":"M Zeng","year":"2019","unstructured":"Zeng, M., Li, M., Fei, Z., Yu, Y., Pan, Y., Wang, J.: Automatic ICD-9 coding via deep transfer learning. Neurocomputing 324, 43\u201350 (2019)","journal-title":"Neurocomputing"},{"key":"9_CR49","doi-asserted-by":"publisher","first-page":"1114","DOI":"10.1093\/bioinformatics\/btaa010","volume":"36","author":"M Zeng","year":"2020","unstructured":"Zeng, M., Zhang, F., Wu, F.-X., Li, Y., Wang, J., Li, M.: Protein\u2013protein interaction site prediction through combining local and global features with deep neural networks. Bioinformatics 36, 1114\u20131120 (2020)","journal-title":"Bioinformatics"}],"container-title":["Lecture Notes in Computer Science","Bioinformatics Research and Applications"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-57821-3_9","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,8,11]],"date-time":"2024-08-11T22:36:36Z","timestamp":1723415796000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/978-3-030-57821-3_9"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020]]},"ISBN":["9783030578206","9783030578213"],"references-count":49,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-57821-3_9","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2020]]},"assertion":[{"value":"18 August 2020","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ISBRA","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Symposium on Bioinformatics Research and Applications","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Moscow","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Russia","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2020","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"1 December 2020","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"4 December 2020","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"16","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"isbra2020","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/isbra.confreg.org\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Easychair","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"131","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"33","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"18","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"25% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"No","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}