iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://api.crossref.org/works/10.1007/978-3-030-57821-3_2
{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,11]],"date-time":"2024-09-11T22:22:20Z","timestamp":1726093340539},"publisher-location":"Cham","reference-count":23,"publisher":"Springer International Publishing","isbn-type":[{"type":"print","value":"9783030578206"},{"type":"electronic","value":"9783030578213"}],"license":[{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"},{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2020]]},"DOI":"10.1007\/978-3-030-57821-3_2","type":"book-chapter","created":{"date-parts":[[2020,8,17]],"date-time":"2020-08-17T09:08:43Z","timestamp":1597655323000},"page":"13-25","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":3,"title":["Signet Ring Cell Detection with Classification Reinforcement Detection Network"],"prefix":"10.1007","author":[{"given":"Sai","family":"Wang","sequence":"first","affiliation":[]},{"given":"Caiyan","family":"Jia","sequence":"additional","affiliation":[]},{"given":"Zhineng","family":"Chen","sequence":"additional","affiliation":[]},{"given":"Xieping","family":"Gao","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2020,8,18]]},"reference":[{"key":"2_CR1","doi-asserted-by":"crossref","unstructured":"Cai, Z., Vasconcelos, N.: Cascade R-CNN: delving into high quality object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6154\u20136162 (2018)","DOI":"10.1109\/CVPR.2018.00644"},{"key":"2_CR2","unstructured":"Cheng, B., Wei, Y., Shi, H., Feris, R., Xiong, J., Huang, T.: Decoupled classification refinement: Hard false positive suppression for object detection. arXiv preprint arXiv:1810.04002 (2018)"},{"key":"2_CR3","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"411","DOI":"10.1007\/978-3-642-40763-5_51","volume-title":"Medical Image Computing and Computer-Assisted Intervention \u2013 MICCAI 2013","author":"DC Cire\u015fan","year":"2013","unstructured":"Cire\u015fan, D.C., Giusti, A., Gambardella, L.M., Schmidhuber, J.: Mitosis detection in breast cancer histology images with deep neural networks. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013. LNCS, vol. 8150, pp. 411\u2013418. Springer, Heidelberg (2013). https:\/\/doi.org\/10.1007\/978-3-642-40763-5_51"},{"key":"2_CR4","doi-asserted-by":"crossref","unstructured":"He, K., Gkioxari, G., Doll\u00e1r, P., Girshick, R.: Mask R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2961\u20132969 (2017)","DOI":"10.1109\/ICCV.2017.322"},{"key":"2_CR5","doi-asserted-by":"crossref","unstructured":"He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770\u2013778 (2016)","DOI":"10.1109\/CVPR.2016.90"},{"key":"2_CR6","doi-asserted-by":"crossref","unstructured":"Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7132\u20137141 (2018)","DOI":"10.1109\/CVPR.2018.00745"},{"key":"2_CR7","doi-asserted-by":"crossref","unstructured":"Hung, J., Carpenter, A.: Applying faster R-CNN for object detection on malaria images. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 56\u201361 (2017)","DOI":"10.1109\/CVPRW.2017.112"},{"issue":"7","key":"2_CR8","doi-asserted-by":"publisher","first-page":"1550","DOI":"10.1109\/TMI.2017.2677499","volume":"36","author":"N Kumar","year":"2017","unstructured":"Kumar, N., Verma, R., Sharma, S., Bhargava, S., Vahadane, A., Sethi, A.: A dataset and a technique for generalized nuclear segmentation for computational pathology. IEEE Trans. Med. Imaging 36(7), 1550\u20131560 (2017)","journal-title":"IEEE Trans. Med. Imaging"},{"key":"2_CR9","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"842","DOI":"10.1007\/978-3-030-20351-1_66","volume-title":"Information Processing in Medical Imaging","author":"J Li","year":"2019","unstructured":"Li, J., et al.: Signet ring cell detection with a semi-supervised learning framework. In: Chung, A.C.S., Gee, J.C., Yushkevich, P.A., Bao, S. (eds.) IPMI 2019. LNCS, vol. 11492, pp. 842\u2013854. Springer, Cham (2019). https:\/\/doi.org\/10.1007\/978-3-030-20351-1_66"},{"key":"2_CR10","unstructured":"Lin, M., Chen, Q., Yan, S.: Network in network. arXiv preprint arXiv:1312.4400 (2013)"},{"key":"2_CR11","doi-asserted-by":"crossref","unstructured":"Lin, T.Y., Goyal, P., Girshick, R., He, K., Doll\u00e1r, P.: Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2980\u20132988 (2017)","DOI":"10.1109\/ICCV.2017.324"},{"key":"2_CR12","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"21","DOI":"10.1007\/978-3-319-46448-0_2","volume-title":"Computer Vision \u2013 ECCV 2016","author":"W Liu","year":"2016","unstructured":"Liu, W., et al.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21\u201337. Springer, Cham (2016). https:\/\/doi.org\/10.1007\/978-3-319-46448-0_2"},{"key":"2_CR13","doi-asserted-by":"crossref","unstructured":"Peng, C., et al.: Megdet: a large mini-batch object detector. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6181\u20136189 (2018)","DOI":"10.1109\/CVPR.2018.00647"},{"issue":"40","key":"2_CR14","doi-asserted-by":"publisher","first-page":"11428","DOI":"10.3748\/wjg.v21.i40.11428","volume":"21","author":"S Pernot","year":"2015","unstructured":"Pernot, S., Voron, T., Perkins, G., Lagorce-Pages, C., Berger, A., Taieb, J.: Signet-ring cell carcinoma of the stomach: impact on prognosis and specific therapeutic challenge. World J. Gastroenterol.: WJG 21(40), 11428 (2015)","journal-title":"World J. Gastroenterol.: WJG"},{"key":"2_CR15","unstructured":"Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, pp. 91\u201399 (2015)"},{"key":"2_CR16","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"234","DOI":"10.1007\/978-3-319-24574-4_28","volume-title":"Medical Image Computing and Computer-Assisted Intervention \u2013 MICCAI 2015","author":"O Ronneberger","year":"2015","unstructured":"Ronneberger, O., Fischer, P., Brox, T.: U-Net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234\u2013241. Springer, Cham (2015). https:\/\/doi.org\/10.1007\/978-3-319-24574-4_28"},{"key":"2_CR17","doi-asserted-by":"crossref","unstructured":"Shrivastava, A., Gupta, A., Girshick, R.: Training region-based object detectors with online hard example mining. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 761\u2013769 (2016)","DOI":"10.1109\/CVPR.2016.89"},{"issue":"5","key":"2_CR18","doi-asserted-by":"publisher","first-page":"1196","DOI":"10.1109\/TMI.2016.2525803","volume":"35","author":"K Sirinukunwattana","year":"2016","unstructured":"Sirinukunwattana, K., Raza, S.E.A., Tsang, Y.W., Snead, D.R., Cree, I.A., Rajpoot, N.M.: Locality sensitive deep learning for detection and classification of nuclei in routine colon cancer histology images. IEEE Trans. Med. Imaging 35(5), 1196\u20131206 (2016)","journal-title":"IEEE Trans. Med. Imaging"},{"key":"2_CR19","unstructured":"Sophea, P., Handayani, D.O.D., Boursier, P.: Abnormal cervical cell detection using hog descriptor and SVM classifier. In: 2018 Fourth International Conference on Advances in Computing, Communication & Automation, pp. 1\u20136. IEEE (2018)"},{"issue":"5","key":"2_CR20","doi-asserted-by":"publisher","first-page":"499","DOI":"10.3390\/cells8050499","volume":"8","author":"EK Wang","year":"2019","unstructured":"Wang, E.K., et al.: Multi-path dilated residual network for nuclei segmentation and detection. Cells 8(5), 499 (2019)","journal-title":"Cells"},{"key":"2_CR21","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"649","DOI":"10.1007\/978-3-319-46723-8_75","volume-title":"Medical Image Computing and Computer-Assisted Intervention \u2013 MICCAI 2016","author":"J Yao","year":"2016","unstructured":"Yao, J., Wang, S., Zhu, X., Huang, J.: Imaging biomarker discovery for lung cancer survival prediction. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 649\u2013657. Springer, Cham (2016). https:\/\/doi.org\/10.1007\/978-3-319-46723-8_75"},{"key":"2_CR22","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"3","DOI":"10.1007\/978-3-030-00889-5_1","volume-title":"Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support","author":"Z Zhou","year":"2018","unstructured":"Zhou, Z., Rahman Siddiquee, M.M., Tajbakhsh, N., Liang, J.: UNet++: a nested U-Net architecture for medical image segmentation. In: Stoyanov, D., et al. (eds.) DLMIA\/ML-CDS -2018. LNCS, vol. 11045, pp. 3\u201311. Springer, Cham (2018). https:\/\/doi.org\/10.1007\/978-3-030-00889-5_1"},{"key":"2_CR23","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"712","DOI":"10.1007\/978-3-030-32239-7_79","volume-title":"Medical Image Computing and Computer Assisted Intervention \u2013 MICCAI 2019","author":"Y Zhu","year":"2019","unstructured":"Zhu, Y., Chen, Z., Zhao, S., Xie, H., Guo, W., Zhang, Y.: ACE-Net: biomedical image segmentation with augmented contracting and expansive paths. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11764, pp. 712\u2013720. Springer, Cham (2019). https:\/\/doi.org\/10.1007\/978-3-030-32239-7_79"}],"container-title":["Lecture Notes in Computer Science","Bioinformatics Research and Applications"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-030-57821-3_2","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,11,7]],"date-time":"2022-11-07T11:34:02Z","timestamp":1667820842000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/978-3-030-57821-3_2"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020]]},"ISBN":["9783030578206","9783030578213"],"references-count":23,"URL":"https:\/\/doi.org\/10.1007\/978-3-030-57821-3_2","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2020]]},"assertion":[{"value":"18 August 2020","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ISBRA","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Symposium on Bioinformatics Research and Applications","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Moscow","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Russia","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2020","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"1 December 2020","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"4 December 2020","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"16","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"isbra2020","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/isbra.confreg.org\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Single-blind","order":1,"name":"type","label":"Type","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"Easychair","order":2,"name":"conference_management_system","label":"Conference Management System","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"131","order":3,"name":"number_of_submissions_sent_for_review","label":"Number of Submissions Sent for Review","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"33","order":4,"name":"number_of_full_papers_accepted","label":"Number of Full Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"18","order":5,"name":"number_of_short_papers_accepted","label":"Number of Short Papers Accepted","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"25% - The value is computed by the equation \"Number of Full Papers Accepted \/ Number of Submissions Sent for Review * 100\" and then rounded to a whole number.","order":6,"name":"acceptance_rate_of_full_papers","label":"Acceptance Rate of Full Papers","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":7,"name":"average_number_of_reviews_per_paper","label":"Average Number of Reviews per Paper","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"3","order":8,"name":"average_number_of_papers_per_reviewer","label":"Average Number of Papers per Reviewer","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}},{"value":"No","order":9,"name":"external_reviewers_involved","label":"External Reviewers Involved","group":{"name":"ConfEventPeerReviewInformation","label":"Peer Review Information (provided by the conference organizers)"}}]}}